194,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
97 °P sammeln
  • Gebundenes Buch

This book offers a systematic and self-contained approach to solve partial differential equations numerically using single and multidomain spectral methods. It contains detailed algorithms in pseudocode for the application of spectral approximations to both one and two dimensional PDEs of mathematical physics describing potentials, transport, and wave propagation. David Kopriva, a well-known researcher in the field with extensive practical experience, shows how only a few fundamental algorithms form the building blocks of any spectral code, even for problems with complex geometries. The book…mehr

Produktbeschreibung
This book offers a systematic and self-contained approach to solve partial differential equations numerically using single and multidomain spectral methods. It contains detailed algorithms in pseudocode for the application of spectral approximations to both one and two dimensional PDEs of mathematical physics describing potentials, transport, and wave propagation. David Kopriva, a well-known researcher in the field with extensive practical experience, shows how only a few fundamental algorithms form the building blocks of any spectral code, even for problems with complex geometries. The book addresses computational and applications scientists, as it emphasizes the practical derivation and implementation of spectral methods over abstract mathematics. It is divided into two parts: First comes a primer on spectral approximation and the basic algorithms, including FFT algorithms, Gauss quadrature algorithms, and how to approximate derivatives. The second part shows how to use those algorithms to solve steady and time dependent PDEs in one and two space dimensions. Exercises and questions at the end of each chapter encourage the reader to experiment with the algorithms.

Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
David Kopriva is Professor of Mathematics at the Florida State University, where he has taught since 1985. He is an expert in the development, implementation and application of high order spectral multi-domain methods for time dependent problems. In 1986 he developed the first multi-domain spectral method for hyperbolic systems, which was applied to the Euler equations of gas dynamics.
Rezensionen
From the reviews:
"This book focuses on the implementation aspects of spectral methods. ... serve as a textbook for graduate students and applied mathematics researchers who seek a practical way to implement spectral algorithms. The presentation is pedagogical, moving from algorithms that are easy to understand to ones that are more complex and involved. ... It is a very recommendable book for a graduate course on spectral methods, and covers more practical subjects that are not usually treated in detail in other monographs on spectral methods." (Javier de Frutos, Mathematical Reviews, Issue 2010 j)