Gauge Field theory in Natural Geometric Language addresses the need to clarify basic mathematical concepts at the crossroad between gravitation and quantum physics.
Gauge Field theory in Natural Geometric Language addresses the need to clarify basic mathematical concepts at the crossroad between gravitation and quantum physics.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Daniel Canarutto is a mathematical physicist interested in the clarification of mathematical notions of fundamental physics, using natural differential geometry as the main tool. His earlier work includes results about the geometry of spacetime singularities. Since 1993 he has focused on basic notions underlying quantum physics, revisiting several aspects within partly original approaches to spinor geometry, distributional bundles and other geometry-related topics.
Inhaltsangabe
1: Bundle prolongations and connections 2: Special algebraic notions 3: Spinors and Minkowski space 4: Spinor bundles and spacetime geometry 5: Classical gauge field theory 6: Gauge field theory and gravitation 7: Optical geometry 8: Electroweak geometry and fields 9: First-order theory of fields with arbitrary spin 10: Infinitesimal deformations of ECD fields 11: Generalised maps 12: Special generalised densities on Minkowski spacetime 13: Multi-particle spaces 14: Bundles of quantum states 15: Quantum bundles 16: Quantum fields 17: Detectors 18: Free quantum fields 19: Electroweak extensions 20: Basic notions in particle physics 21: Scattering matrix computations 22: Quantum electrodynamics 23: On gauge freedom and interactions
1: Bundle prolongations and connections 2: Special algebraic notions 3: Spinors and Minkowski space 4: Spinor bundles and spacetime geometry 5: Classical gauge field theory 6: Gauge field theory and gravitation 7: Optical geometry 8: Electroweak geometry and fields 9: First-order theory of fields with arbitrary spin 10: Infinitesimal deformations of ECD fields 11: Generalised maps 12: Special generalised densities on Minkowski spacetime 13: Multi-particle spaces 14: Bundles of quantum states 15: Quantum bundles 16: Quantum fields 17: Detectors 18: Free quantum fields 19: Electroweak extensions 20: Basic notions in particle physics 21: Scattering matrix computations 22: Quantum electrodynamics 23: On gauge freedom and interactions
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826