Ricardo Carretero-González, Dimitrios J. Frantzeskakis, Panayotis G. Kevrekidis
Nonlinear Waves & Hamiltonian Systems (eBook, PDF)
From One To Many Degrees of Freedom, From Discrete To Continuum
31,95 €
31,95 €
inkl. MwSt.
Sofort per Download lieferbar
16 °P sammeln
31,95 €
Als Download kaufen
31,95 €
inkl. MwSt.
Sofort per Download lieferbar
16 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
31,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
16 °P sammeln
Ricardo Carretero-González, Dimitrios J. Frantzeskakis, Panayotis G. Kevrekidis
Nonlinear Waves & Hamiltonian Systems (eBook, PDF)
From One To Many Degrees of Freedom, From Discrete To Continuum
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The aim of this book is to provide a self-contained introduction to the continuously developing field of nonlinear waves, that offers the background, the basic ideas and mathematical, as well as computational methods, while also presenting an overview of associated physical applications.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 43.25MB
Andere Kunden interessierten sich auch für
- Hugo D JunghennDiscrete Mathematics with Coding (eBook, PDF)97,95 €
- Chaos, Noise and Fractals (eBook, PDF)65,95 €
- Sheldon M. RossIntroduction to Stochastic Dynamic Programming (eBook, PDF)40,95 €
- Benjamin DodsonDefocusing Nonlinear Schrodinger Equations (eBook, PDF)101,95 €
- Guigen ZhangBulk and Surface Acoustic Waves (eBook, PDF)122,95 €
- Deep Imaging in Tissue and Biomedical Materials (eBook, PDF)139,95 €
- Peter ZörnigNonlinear Programming (eBook, PDF)35,95 €
-
-
-
The aim of this book is to provide a self-contained introduction to the continuously developing field of nonlinear waves, that offers the background, the basic ideas and mathematical, as well as computational methods, while also presenting an overview of associated physical applications.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Oxford University Press
- Seitenzahl: 416
- Erscheinungstermin: 5. November 2024
- Englisch
- ISBN-13: 9780192654946
- Artikelnr.: 72262326
- Verlag: Oxford University Press
- Seitenzahl: 416
- Erscheinungstermin: 5. November 2024
- Englisch
- ISBN-13: 9780192654946
- Artikelnr.: 72262326
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Ricardo Carretero-González holds a Summa Cum Laude B.Sc. in Physics from the Universidad Nacional Autónoma de México, and a Ph.D. in Applied Mathematics and Computation from Queen Mary College, University of London. He previously held a post-doctoral post at University College London and at Simon Fraser University, Canada, and is currently a Professor of Applied Mathematics at San Diego State University. His research focuses on spatio-temporal dynamical systems, nonlinear waves, and their applications. He is an active advocate of the dissemination of science and he regularly delivers engaging presentations at local high schools and science festivals. Dimitrios J. Frantzeskakis holds an Electrical Engineering Diploma from the University of Patras, and a PhD in Engineering from the National Technical University of Athens. He was an Instructor in the Naval Academy of Greece, a Research Associate at NTUA, and is currently a Professor in the Department of Physics at the National and Kapodistrian University of Athens. His research focuses on nonlinear waves and solitons, with applications to various physical contexts. Many of his theoretical results initiated important experimental projects, which verified a number of theoretical predictions reported in his papers; he is a co-author of several works reporting these experimental results. Panayotis G. Kevrekidis holds a Distinguished University Professorship at the University of Massachusetts Amherst since 2015. Previously, he was an Assistant (2001-2005), Associate (2005-2010) and Full Professor (2010-2015) at UMass. His doctoral studies were conducted at Rutgers University, where he earned an M.S., an M. Phil. and a Ph.D. He subsequently spent a post-doctoral year between Princeton's Program in Applied and Computational Mathematics and Los Alamos' Center for Nonlinear Studies.
PART I - INTRODUCTION AND MOTIVATION OF MODELS
1: Introduction and Motivation
2: Linear Dispersive Wave Equations
3: Nonlinear Dispersive Wave Equations
PART II - KORTEWEG-DE VRIES (KDV) EQUATION
4: The Korteweg-de Vries (KdV) Equation
5: From Boussinesq to KdV - Boussinesq Solitons as KdV Solitons
6: Traveling Wave Reduction, Elliptic Functions, and Connections to KdV
7: Burgers and KdV-Burgers (KdVB) Equations - Regularized ShockWaves
8: A Final Touch From KdV: Invariances and Self-Similar Solutions
9: Spectral Methods
10: Bäcklund Transformation for the KdV
11: Inverse Scattering Transform I - the KdV equation
12: Direct Perturbation Theory for Solitons
13: The Kadomtsev-Petviashvili Equation
PART III - KLEIN-GORDON, SINE-GORDON, AND PHI-4 MODELS
14: Another Class of Models: Nonlinear Klein-Gordon Equations
15: Additional Tools/Results for Klein-Gordon Equations
16: Klein-Gordon to NLS Connection - Breathers as NLS Solitons
17: Interlude: Numerical Considerations for Nonlinear Wave Equations
PART IV - THE NONLINEAR SCHRÖDINGER EQUATIONS
18: The Nonlinear Schrödinger (NLS) Equation
19: NLS to KdV Connection - Dark Solitons as KdV Solitons
20: Actions, Symmetries, Conservation Laws, Noether's Theorem, and all that
21: Applications of Conservation Laws - Adiabatic Perturbation Method
22: Numerical Techniques for NLS
23: Inverse Scattering Transform II - the NLS Equation
24: The Gross-Pitaevskii (GP) Equation
25: Variational Approximation for the NLS and GP Equations
26: Stability Analysis in 1D
27: Multi-Component Systems
28: Transverse Instability of Solitons Stripes - Perturbative Approach
29: Transverse Instability of Dark Stripes - Adiabatic Invariant Approach
30: Vortices in the 2D Defocusing NLS
PART V - DISCRETE MODELS
31: The Discrete Klein-Gordon model
32: Discrete Models of the Nonlinear Schrödinger Type
33: From Toda to FPUT and Beyond
1: Introduction and Motivation
2: Linear Dispersive Wave Equations
3: Nonlinear Dispersive Wave Equations
PART II - KORTEWEG-DE VRIES (KDV) EQUATION
4: The Korteweg-de Vries (KdV) Equation
5: From Boussinesq to KdV - Boussinesq Solitons as KdV Solitons
6: Traveling Wave Reduction, Elliptic Functions, and Connections to KdV
7: Burgers and KdV-Burgers (KdVB) Equations - Regularized ShockWaves
8: A Final Touch From KdV: Invariances and Self-Similar Solutions
9: Spectral Methods
10: Bäcklund Transformation for the KdV
11: Inverse Scattering Transform I - the KdV equation
12: Direct Perturbation Theory for Solitons
13: The Kadomtsev-Petviashvili Equation
PART III - KLEIN-GORDON, SINE-GORDON, AND PHI-4 MODELS
14: Another Class of Models: Nonlinear Klein-Gordon Equations
15: Additional Tools/Results for Klein-Gordon Equations
16: Klein-Gordon to NLS Connection - Breathers as NLS Solitons
17: Interlude: Numerical Considerations for Nonlinear Wave Equations
PART IV - THE NONLINEAR SCHRÖDINGER EQUATIONS
18: The Nonlinear Schrödinger (NLS) Equation
19: NLS to KdV Connection - Dark Solitons as KdV Solitons
20: Actions, Symmetries, Conservation Laws, Noether's Theorem, and all that
21: Applications of Conservation Laws - Adiabatic Perturbation Method
22: Numerical Techniques for NLS
23: Inverse Scattering Transform II - the NLS Equation
24: The Gross-Pitaevskii (GP) Equation
25: Variational Approximation for the NLS and GP Equations
26: Stability Analysis in 1D
27: Multi-Component Systems
28: Transverse Instability of Solitons Stripes - Perturbative Approach
29: Transverse Instability of Dark Stripes - Adiabatic Invariant Approach
30: Vortices in the 2D Defocusing NLS
PART V - DISCRETE MODELS
31: The Discrete Klein-Gordon model
32: Discrete Models of the Nonlinear Schrödinger Type
33: From Toda to FPUT and Beyond
PART I - INTRODUCTION AND MOTIVATION OF MODELS
1: Introduction and Motivation
2: Linear Dispersive Wave Equations
3: Nonlinear Dispersive Wave Equations
PART II - KORTEWEG-DE VRIES (KDV) EQUATION
4: The Korteweg-de Vries (KdV) Equation
5: From Boussinesq to KdV - Boussinesq Solitons as KdV Solitons
6: Traveling Wave Reduction, Elliptic Functions, and Connections to KdV
7: Burgers and KdV-Burgers (KdVB) Equations - Regularized ShockWaves
8: A Final Touch From KdV: Invariances and Self-Similar Solutions
9: Spectral Methods
10: Bäcklund Transformation for the KdV
11: Inverse Scattering Transform I - the KdV equation
12: Direct Perturbation Theory for Solitons
13: The Kadomtsev-Petviashvili Equation
PART III - KLEIN-GORDON, SINE-GORDON, AND PHI-4 MODELS
14: Another Class of Models: Nonlinear Klein-Gordon Equations
15: Additional Tools/Results for Klein-Gordon Equations
16: Klein-Gordon to NLS Connection - Breathers as NLS Solitons
17: Interlude: Numerical Considerations for Nonlinear Wave Equations
PART IV - THE NONLINEAR SCHRÖDINGER EQUATIONS
18: The Nonlinear Schrödinger (NLS) Equation
19: NLS to KdV Connection - Dark Solitons as KdV Solitons
20: Actions, Symmetries, Conservation Laws, Noether's Theorem, and all that
21: Applications of Conservation Laws - Adiabatic Perturbation Method
22: Numerical Techniques for NLS
23: Inverse Scattering Transform II - the NLS Equation
24: The Gross-Pitaevskii (GP) Equation
25: Variational Approximation for the NLS and GP Equations
26: Stability Analysis in 1D
27: Multi-Component Systems
28: Transverse Instability of Solitons Stripes - Perturbative Approach
29: Transverse Instability of Dark Stripes - Adiabatic Invariant Approach
30: Vortices in the 2D Defocusing NLS
PART V - DISCRETE MODELS
31: The Discrete Klein-Gordon model
32: Discrete Models of the Nonlinear Schrödinger Type
33: From Toda to FPUT and Beyond
1: Introduction and Motivation
2: Linear Dispersive Wave Equations
3: Nonlinear Dispersive Wave Equations
PART II - KORTEWEG-DE VRIES (KDV) EQUATION
4: The Korteweg-de Vries (KdV) Equation
5: From Boussinesq to KdV - Boussinesq Solitons as KdV Solitons
6: Traveling Wave Reduction, Elliptic Functions, and Connections to KdV
7: Burgers and KdV-Burgers (KdVB) Equations - Regularized ShockWaves
8: A Final Touch From KdV: Invariances and Self-Similar Solutions
9: Spectral Methods
10: Bäcklund Transformation for the KdV
11: Inverse Scattering Transform I - the KdV equation
12: Direct Perturbation Theory for Solitons
13: The Kadomtsev-Petviashvili Equation
PART III - KLEIN-GORDON, SINE-GORDON, AND PHI-4 MODELS
14: Another Class of Models: Nonlinear Klein-Gordon Equations
15: Additional Tools/Results for Klein-Gordon Equations
16: Klein-Gordon to NLS Connection - Breathers as NLS Solitons
17: Interlude: Numerical Considerations for Nonlinear Wave Equations
PART IV - THE NONLINEAR SCHRÖDINGER EQUATIONS
18: The Nonlinear Schrödinger (NLS) Equation
19: NLS to KdV Connection - Dark Solitons as KdV Solitons
20: Actions, Symmetries, Conservation Laws, Noether's Theorem, and all that
21: Applications of Conservation Laws - Adiabatic Perturbation Method
22: Numerical Techniques for NLS
23: Inverse Scattering Transform II - the NLS Equation
24: The Gross-Pitaevskii (GP) Equation
25: Variational Approximation for the NLS and GP Equations
26: Stability Analysis in 1D
27: Multi-Component Systems
28: Transverse Instability of Solitons Stripes - Perturbative Approach
29: Transverse Instability of Dark Stripes - Adiabatic Invariant Approach
30: Vortices in the 2D Defocusing NLS
PART V - DISCRETE MODELS
31: The Discrete Klein-Gordon model
32: Discrete Models of the Nonlinear Schrödinger Type
33: From Toda to FPUT and Beyond