Dieses essential befasst sich mit Anwendungen des maschinellen Lernens in verschiedenen Bereichen der Naturwissenschaften. Es behandelt geläufige Strukturen und Algorithmen, um Daten mit den Techniken des maschinellen Lernens zu analysieren. Zunächst werden Methoden eingeführt, die an klassischen statistischen Analysen andocken und auf soliderem mathematischem Fundament stehen. Die Autoren machen mit den verschiedenen Strukturen für künstliche neuronale Netzwerke vertraut und zeigen die jeweiligen Anwendungsgebiete.
Dieses essential befasst sich mit Anwendungen des maschinellen Lernens in verschiedenen Bereichen der Naturwissenschaften. Es behandelt geläufige Strukturen und Algorithmen, um Daten mit den Techniken des maschinellen Lernens zu analysieren. Zunächst werden Methoden eingeführt, die an klassischen statistischen Analysen andocken und auf soliderem mathematischem Fundament stehen. Die Autoren machen mit den verschiedenen Strukturen für künstliche neuronale Netzwerke vertraut und zeigen die jeweiligen Anwendungsgebiete.
Kenny Choo ist Doktorand am Physik-Institut der Universität Zürich. Eliska Greplova ist Assistenz-Professorin für Quanten-Nanowissenschaften an der Technischen Universität Delft. Mark H. Fischer ist Oberassistent am Physik-Institut der Universität Zürich. Titus Neupert ist Professor für theoretische Physik an der Universität Zürich.
Inhaltsangabe
Einführung. - Maschinelles Lernen ohne neuronale Netzwerke. - Neuronale Netzwerke und überwachtes Lernen. - Unüberwachtes Lernen. - Interpretierbarkeit von neuronalen Netzwerken. - Schlusskommentare.