In this monograph, the authors introduce a novel fuzzy rule-base, referred to as the Fuzzy All-permutations Rule-Base (FARB). They show that inferring the FARB, using standard tools from fuzzy logic theory, yields an input-output map that is mathematically equivalent to that of an artificial neural network. Conversely, every standard artificial neural network has an equivalent FARB.
The FARB-ANN equivalence integrates the merits of symbolic fuzzy rule-bases and sub-symbolic artificial neural networks, and yields a new approach for knowledge-based neurocomputing in artificial neural networks.
The FARB-ANN equivalence integrates the merits of symbolic fuzzy rule-bases and sub-symbolic artificial neural networks, and yields a new approach for knowledge-based neurocomputing in artificial neural networks.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.