Aimed at mathematicians, physicists, engineers, and grad students, this monograph will be useful for the nonlinear analysis of problems arising in geometry or mathematical physics. The material presented covers recent and original results by the authors, and serves as an excellent classroom text or a valuable self-study resource.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"In the course of their argument, the authors traverse a broad range of nontrivial analysis: elliptic equations on weighted Holder and Sobolev spaces, radially symmetric solutions, gluing techniques, Pokhozhaev-type arguments for solutions of semilinear elliptic equations, and more. Clearly aimed at a research audience, this book provides a fascinating and original account of the theory of Ginzburg-Landau vortices."
--Mathematical Reviews
--Mathematical Reviews
"The present monograph contains new and deep original results in the geometrical theory of Ginzburg-Landau vortices. ... This book is suitable for readers with a knowledge of nonlinear partial differential equations and should appeal to researchers interested in such diverse areas ... . For all these reasons, the reviewer strongly believes that 'Linear and Nonlinear Aspects of Vortices (The Ginzburg-Landau Model)' is an outstanding contribution to the field and should be available in all mathematics and physics libraries." (Vicentiu D.Radulescu, zbMATH 0948.35003, 2022)
"In the course of their argument, the authors traverse a broad range of nontrivial analysis: elliptic equations on weighted Holder and Sobolev spaces, radially symmetric solutions, gluing techniques, Pokhozhaev-type arguments for solutions of semilinear elliptic equations, and more. Clearly aimed at a research audience, this book provides a fascinating and original account of the theory of Ginzburg-Landau vortices."
--Mathematical Reviews
"In the course of their argument, the authors traverse a broad range of nontrivial analysis: elliptic equations on weighted Holder and Sobolev spaces, radially symmetric solutions, gluing techniques, Pokhozhaev-type arguments for solutions of semilinear elliptic equations, and more. Clearly aimed at a research audience, this book provides a fascinating and original account of the theory of Ginzburg-Landau vortices."
--Mathematical Reviews