G. Uebe
Produktionstheorie (eBook, PDF)
-22%11
42,99 €
54,99 €**
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
-22%11
42,99 €
54,99 €**
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
Als Download kaufen
54,99 €****
-22%11
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Jetzt verschenken
Alle Infos zum eBook verschenken
54,99 €****
-22%11
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
G. Uebe
Produktionstheorie (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 17.23MB
Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 306
- Erscheinungstermin: 13. März 2013
- Deutsch
- ISBN-13: 9783642879517
- Artikelnr.: 53100711
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
I Einige Beispiele zur Wichtigkeit der Produktionstheorie.- 1. Beispiel 1 (Mitscherlich-Wittmann) Eine Produktion mit Obergrenze.- 2. Beispiel 2 (Nelson 1973) Eine Erklärung des industriellen Wachstums.- 3. Beispiel 3 (Forrester-Meadows-Nordhaus) Eine resourcenabhängige Produktionsfunktion.- 4. Beispiel 4 (Harrod-Allen) Harrod's "knife edge".- 5. Anmerkungen.- II Die zentrale Programmierungsaufgabe der Produktionstheorie.- 1. Die Güterräume.- 2. Die Zielfunktion.- 3. Die Notwendigkeit der Einschränkung durch Annahmen.- 4. Eine Auswahl üblicher Annahmen über den Güterraum (das Güterbündel) Y und über die zugehörigen Technologien.- 5. Einschränkungen zur Zielfunktion.- 6. Die Einschränkungen des Buches.- 7. Anmerkungen.- III Definitionen.- 1. Die Produktionsfunktion.- 2. Die Berücksichtigung der ersten Ableitungen.- 3. Die Berücksichtigung der zweiten Ableitungen.- 4. Einige Elastizitäten.- 5. Anmerkungen.- IV Konturlinien.- 1. Einige vorbereitende Grundlagen.- 1.5 Satz 1 Konvexe Hypographen konkaver Funktionen.- 1.6 Satz 2 Konvexe Niveaumengen und quasikonkave Funktionen.- 1.7 Satz 3 Beschränktheit von Niveaumengen.- 1.8 Satz 4 Aquivalenz von konvexen Funktionen und konkaven Mengen (Rockafellar).- 2. Anwendung auf die Produktionstheorie.- 3. Einige Isoquanten im (v1,v2) Diagramm.- 4. Anmerkungen.- V Homogenität.- 1. Homogenität für die Produktionsfunktion x = f (v).- 2. Homogenität für die Produktionsbeziehung F(z) = F(x,v) = 0.- 3. Anmerkungen.- VI Die CES-Familie von Produktionsfunktionen.- 1. Vorbemerkung.- 2. Die Definition der Substitutionselastizität.- 3. Einige Lemmata.- 4. Die allgemeine CES-Produktionsfunktion.- 5. Die Cobb-Douglas Produktionsfunktion.- 6. Die Walras-Leontief Produktionsfunktion.- 7. Die lineareProduktionsfunktion.- 8. Verallgemeinerung der Walras-Leontief-Produktionsfunktion zu alternativen Prozessen - Der lineare Beschränkungsteil eines LP's oder NLP's.- 9. Alternative Darstellungen einer Produktionsfunktion.- 10. Anmerkungen.- VII Das Produktionsproblem als ein Problem der Mathematischen Programmierung.- 1. Einige Sätze.- 2. Einige Produktionsprobleme.- 3. Der Lagrange-Ansatz für das Produktionsproblem bei vorgebenen Preisen.- 4. Der Ansatz der konjugierten Funktion für das Produktionsproblem bei vorgegebenen Preisen.- 5. Der allgemeine Ansatz der Nichtlinearen Programmierung für das Produktionsproblem.- 6. Ein alternativer Ansatz über die Konturlinien.- 7. Anmerkungen.- VIII Die Mittelwertbildung als ein Produktionsproblem.- 1. Die Produktionsfunktionen der CES-Familie als Mittelwerte.- 2. Mittelwerte von Funktionen (Satz 1).- 3. Äquivalente Mittelwerte (Satz 2).- 4. Linearhomogenität eines Mittels (Satz 3).- 5. Erste Verallgemeinerung aus der Mittelwertbildung Die Transformation von Variablen der Produktionsfunktion.- 6. Zweite Verallgemeinerung aus der Mittelwertbildung Der Begriff der homothetischen Produktionsfunktion.- 7. Dritte Verallgemeinerung aus der Mittelwertbildung Inputabhängige Homoaenität (Satz 4 (Eichhorn)).- 8. Vierte Verallgemeinerung aus der Mittelwertbildung Geschachtelte Mittel.- 9. Anmerkungen.- IX Die Konstruktion von Produktionsfunktionen aus elementaren Eigenschaften.- 1. Allgemeines.- 2. Die Konstruktion der CES-Familie für zwei Faktoren und Linearhomogenität im Fall des klassischen Produktionsproblems.- 3. Die Konstruktion einer verallgemeinerten CES-Isoquante.- 4. Die Konstruktion der CES-Familie für n * 2 Faktoren und Linear und Teilhomogenität.- 5. Die Konstruktion einer fortschrittsneutralenProduktionsfunktion für zwei Faktoren und Linearhomogenität im Fall des klassischen Produktionsproblem.- 6. Die Konstruktion einer homothetischen Produktionsfunktion mit verallgemeinerter Homogenität.- 7. Die Krelle-Diewert'sche Verallgemeinerung der Leontief-Produktionsfunktion.- 8. Anmerkungen.- X Die Parallelität zwischen Produktionstheorie und Konsumtheorie.- 1. Eine allgemeine Formulierung.- 2. Der konkave Lagrange-Ansatz.- 3. Partielle Differentiation der beiden Optimalitätsbedingungen 1. Ordnung.- 4. Die kompensierte Variation nach Slutsky.- 5. Die Spezialisierung auf ein Produktions- und ein Konsumproblem.- 6. Anmerkungen.
I Einige Beispiele zur Wichtigkeit der Produktionstheorie.- 1. Beispiel 1 (Mitscherlich-Wittmann) Eine Produktion mit Obergrenze.- 2. Beispiel 2 (Nelson 1973) Eine Erklärung des industriellen Wachstums.- 3. Beispiel 3 (Forrester-Meadows-Nordhaus) Eine resourcenabhängige Produktionsfunktion.- 4. Beispiel 4 (Harrod-Allen) Harrod's "knife edge".- 5. Anmerkungen.- II Die zentrale Programmierungsaufgabe der Produktionstheorie.- 1. Die Güterräume.- 2. Die Zielfunktion.- 3. Die Notwendigkeit der Einschränkung durch Annahmen.- 4. Eine Auswahl üblicher Annahmen über den Güterraum (das Güterbündel) Y und über die zugehörigen Technologien.- 5. Einschränkungen zur Zielfunktion.- 6. Die Einschränkungen des Buches.- 7. Anmerkungen.- III Definitionen.- 1. Die Produktionsfunktion.- 2. Die Berücksichtigung der ersten Ableitungen.- 3. Die Berücksichtigung der zweiten Ableitungen.- 4. Einige Elastizitäten.- 5. Anmerkungen.- IV Konturlinien.- 1. Einige vorbereitende Grundlagen.- 1.5 Satz 1 Konvexe Hypographen konkaver Funktionen.- 1.6 Satz 2 Konvexe Niveaumengen und quasikonkave Funktionen.- 1.7 Satz 3 Beschränktheit von Niveaumengen.- 1.8 Satz 4 Aquivalenz von konvexen Funktionen und konkaven Mengen (Rockafellar).- 2. Anwendung auf die Produktionstheorie.- 3. Einige Isoquanten im (v1,v2) Diagramm.- 4. Anmerkungen.- V Homogenität.- 1. Homogenität für die Produktionsfunktion x = f (v).- 2. Homogenität für die Produktionsbeziehung F(z) = F(x,v) = 0.- 3. Anmerkungen.- VI Die CES-Familie von Produktionsfunktionen.- 1. Vorbemerkung.- 2. Die Definition der Substitutionselastizität.- 3. Einige Lemmata.- 4. Die allgemeine CES-Produktionsfunktion.- 5. Die Cobb-Douglas Produktionsfunktion.- 6. Die Walras-Leontief Produktionsfunktion.- 7. Die lineareProduktionsfunktion.- 8. Verallgemeinerung der Walras-Leontief-Produktionsfunktion zu alternativen Prozessen - Der lineare Beschränkungsteil eines LP's oder NLP's.- 9. Alternative Darstellungen einer Produktionsfunktion.- 10. Anmerkungen.- VII Das Produktionsproblem als ein Problem der Mathematischen Programmierung.- 1. Einige Sätze.- 2. Einige Produktionsprobleme.- 3. Der Lagrange-Ansatz für das Produktionsproblem bei vorgebenen Preisen.- 4. Der Ansatz der konjugierten Funktion für das Produktionsproblem bei vorgegebenen Preisen.- 5. Der allgemeine Ansatz der Nichtlinearen Programmierung für das Produktionsproblem.- 6. Ein alternativer Ansatz über die Konturlinien.- 7. Anmerkungen.- VIII Die Mittelwertbildung als ein Produktionsproblem.- 1. Die Produktionsfunktionen der CES-Familie als Mittelwerte.- 2. Mittelwerte von Funktionen (Satz 1).- 3. Äquivalente Mittelwerte (Satz 2).- 4. Linearhomogenität eines Mittels (Satz 3).- 5. Erste Verallgemeinerung aus der Mittelwertbildung Die Transformation von Variablen der Produktionsfunktion.- 6. Zweite Verallgemeinerung aus der Mittelwertbildung Der Begriff der homothetischen Produktionsfunktion.- 7. Dritte Verallgemeinerung aus der Mittelwertbildung Inputabhängige Homoaenität (Satz 4 (Eichhorn)).- 8. Vierte Verallgemeinerung aus der Mittelwertbildung Geschachtelte Mittel.- 9. Anmerkungen.- IX Die Konstruktion von Produktionsfunktionen aus elementaren Eigenschaften.- 1. Allgemeines.- 2. Die Konstruktion der CES-Familie für zwei Faktoren und Linearhomogenität im Fall des klassischen Produktionsproblems.- 3. Die Konstruktion einer verallgemeinerten CES-Isoquante.- 4. Die Konstruktion der CES-Familie für n * 2 Faktoren und Linear und Teilhomogenität.- 5. Die Konstruktion einer fortschrittsneutralenProduktionsfunktion für zwei Faktoren und Linearhomogenität im Fall des klassischen Produktionsproblem.- 6. Die Konstruktion einer homothetischen Produktionsfunktion mit verallgemeinerter Homogenität.- 7. Die Krelle-Diewert'sche Verallgemeinerung der Leontief-Produktionsfunktion.- 8. Anmerkungen.- X Die Parallelität zwischen Produktionstheorie und Konsumtheorie.- 1. Eine allgemeine Formulierung.- 2. Der konkave Lagrange-Ansatz.- 3. Partielle Differentiation der beiden Optimalitätsbedingungen 1. Ordnung.- 4. Die kompensierte Variation nach Slutsky.- 5. Die Spezialisierung auf ein Produktions- und ein Konsumproblem.- 6. Anmerkungen.