This highly motivating introduction to statistical learning machines explains underlying principles in nontechnical language, using many examples and figures.
This highly motivating introduction to statistical learning machines explains underlying principles in nontechnical language, using many examples and figures.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
James D. Malley is a Research Mathematical Statistician in the Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, at the National Institutes of Health.
Inhaltsangabe
Preface Acknowledgements Part I. Introduction: 1. Prologue 2. The landscape of learning machines 3. A mangle of machines 4. Three examples and several machines Part II. A Machine Toolkit: 5. Logistic regression 6. A single decision tree 7. Random forests - trees everywhere Part III. Analysis Fundamentals: 8. Merely two variables 9. More than two variables 10. Resampling methods 11. Error analysis and model validation Part IV. Machine Strategies: 12. Ensemble methods - let's take a vote 13. Summary and conclusions References Index.
Preface; Acknowledgements; Part I. Introduction: 1. Prologue; 2. The landscape of learning machines; 3. A mangle of machines; 4. Three examples and several machines; Part II. A Machine Toolkit: 5. Logistic regression; 6. A single decision tree; 7. Random forests - trees everywhere; Part III. Analysis Fundamentals: 8. Merely two variables; 9. More than two variables; 10. Resampling methods; 11. Error analysis and model validation; Part IV. Machine Strategies: 12. Ensemble methods - let's take a vote; 13. Summary and conclusions; References; Index.
Preface Acknowledgements Part I. Introduction: 1. Prologue 2. The landscape of learning machines 3. A mangle of machines 4. Three examples and several machines Part II. A Machine Toolkit: 5. Logistic regression 6. A single decision tree 7. Random forests - trees everywhere Part III. Analysis Fundamentals: 8. Merely two variables 9. More than two variables 10. Resampling methods 11. Error analysis and model validation Part IV. Machine Strategies: 12. Ensemble methods - let's take a vote 13. Summary and conclusions References Index.
Preface; Acknowledgements; Part I. Introduction: 1. Prologue; 2. The landscape of learning machines; 3. A mangle of machines; 4. Three examples and several machines; Part II. A Machine Toolkit: 5. Logistic regression; 6. A single decision tree; 7. Random forests - trees everywhere; Part III. Analysis Fundamentals: 8. Merely two variables; 9. More than two variables; 10. Resampling methods; 11. Error analysis and model validation; Part IV. Machine Strategies: 12. Ensemble methods - let's take a vote; 13. Summary and conclusions; References; Index.
Rezensionen
'The book is well written and provides nice graphics and numerous applications.' Michael R. Chernick, Technometrics
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826