34,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
17 °P sammeln
  • Broschiertes Buch

Asymptotic Giant Branch stars are stars at the end of their lifetime with low to intermediate masses. They are important in the Galactic context, since they contribute a lot of dust to the interstellar medium (ISM) and influence the chemical evolution of the Galaxy. Many AGB stars show peculiar outflow morphologies depending on their mass-loss rates. The outflowing wind of these stars collides with the surrounding interstellar medium (ISM). The collisions with the ISM result in the formation of bow shocks or rings, well visible in the latest Herschel Space Observatory images made with the…mehr

Produktbeschreibung
Asymptotic Giant Branch stars are stars at the end of their lifetime with low to intermediate masses. They are important in the Galactic context, since they contribute a lot of dust to the interstellar medium (ISM) and influence the chemical evolution of the Galaxy. Many AGB stars show peculiar outflow morphologies depending on their mass-loss rates. The outflowing wind of these stars collides with the surrounding interstellar medium (ISM). The collisions with the ISM result in the formation of bow shocks or rings, well visible in the latest Herschel Space Observatory images made with the on-board PACS instrument. Kelvin-Helmholtz and Rayleight-Taylor instabilities were found in the bow shock regions. With the help of Herschel and within the framework of the MESS (Mass loss of Evolved StarS) Guaranteed Time Key Program it was tried to distinguish between the different morphologies. Some of the AGB stars in the MESS sample are known binary stars and the binary state of some other objects is still in discussion. A new attempt to clarify the binarity of the objects can be made by checking their outflow morphology and to compare the results with known morphological (a-) symmetries in binary systems.
Autorenporträt
The author studied astronomy at the University of Vienna and was a member of the local AGB Working Group. This group took part in the Herschel MESS Guaranteed Time Key Program. Some of the results of this program are discussed in this publication.