136,95 €
136,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
68 °P sammeln
136,95 €
136,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
68 °P sammeln
Als Download kaufen
136,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
68 °P sammeln
Jetzt verschenken
136,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
68 °P sammeln
  • Format: ePub

Metallurgy and Design of Alloys with Hierarchical Microstructures covers the fundamentals of processing-microstructure-property relationships and how multiple properties are balanced and optimized in materials with hierarchical microstructures widely used in critical applications. The discussion is based principally on metallic materials used in aircraft structures; however, because they have sufficiently diverse microstructures, the underlying principles can easily be extended to other materials systems. With the increasing microstructural complexity of structural materials, it is important…mehr

Produktbeschreibung
Metallurgy and Design of Alloys with Hierarchical Microstructures covers the fundamentals of processing-microstructure-property relationships and how multiple properties are balanced and optimized in materials with hierarchical microstructures widely used in critical applications. The discussion is based principally on metallic materials used in aircraft structures; however, because they have sufficiently diverse microstructures, the underlying principles can easily be extended to other materials systems. With the increasing microstructural complexity of structural materials, it is important for students, academic researchers and practicing engineers to possess the knowledge of how materials are optimized and how they will behave in service.

The book integrates aspects of computational materials science, physical metallurgy, alloy design, process design, and structure-properties relationships, in a manner not done before. It fills a knowledge gap in the interrelationships of multiple microstructural and deformation mechanisms by applying the concepts and tools of designing microstructures for achieving combinations of engineering properties-such as strength, corrosion resistance, durability and damage tolerance in multi-component materials-used for critical structural applications.

  • Discusses the science behind the properties and performance of advanced metallic materials
  • Provides for the efficient design of materials and processes to satisfy targeted performance in materials and structures
  • Enables the selection and development of new alloys for specific applications based upon evaluation of their microstructure as illustrated in this work

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Krishnan K. Sankaran is an Adjunct Instructor in the Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, where he teaches a graduate level course titled "Metallurgy and Design of Alloys. Dr. Sankaran specializes in aerospace materials and processes and retired as a Senior Technical Fellow from The Boeing Company in 2014. He received his Ph.D. in Metallurgy from the Massachusetts Institute of Technology in 1978. He has many publications and US and European patents. He has been an adjunct professor of materials science and engineering at the Missouri Institute of Science & Technology, Rolla, MO. He was a member of the Research Board and the Council of The Welding Institute, UK. He is a Fellow of the Academy of Science of St. Louis and a member of AIAA, ASM and TMS. In 2012, he was elected as Honorary Member of the Indian Institute of Metals for his distinguished services and significant contributions to the metallurgical profession and research.Prof. Rajiv Mishra (Ph.D. in Metallurgy from University of Sheffield) is a Regents Professor at the University of North Texas and founder of Optimus Alloys LLC. He is a Fellow of ASM International. He is a past-chair of the Structural Materials Division of TMS and served on the TMS Board of Directors (2013-16). He has authored/co-authored more than 450 papers in peer-reviewed journals and proceedings and is principal inventor of four U.S. patents. His current Google Scholar h-index is 95 and his papers have been cited more than 43000 times. He has co-authored three books; (1) Friction Stir Welding and Processing, (2) Metallurgy and Design of Alloys with Hierarchical Microstructures, (3) High Entropy Materials: Processing, Properties, and Applications. He has edited or co-edited fifteen TMS conference proceedings. He was an associate editor of Journal of Materials Processing Technology and is the founding editor of a short book series on Friction Stir Welding and Processing published by Elsevier and has co-authored seven short books in this series. He is a recipient of TMS-SMD Distinguished Scientist Award in 2020 and TMS-MPMD Distinguished Scientist Award in 2024. He is an adjunct professor in the department of Materials Science and Engineering at North Carolina State University. Most recently, he has founded Optimus Alloys LLC for commercialization of research efforts and serves as the Chief Scientific Advisor. Optimus Alloys is focused on process-specific alloy design for additive manufacturing of high-performance components.