Kristian Gjøsteen
Practical Mathematical Cryptography (eBook, PDF)
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
48,95 €
Als Download kaufen
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
24 °P sammeln
Kristian Gjøsteen
Practical Mathematical Cryptography (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book provides a clear and accessible introduction to practical mathematical cryptography. The presentation provides a unified and consistent treatment of the most important cryptographic topics, from the initial design and analysis of basic cryptographic schemes towards applications.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 5.87MB
Andere Kunden interessierten sich auch für
- Kristian GjøsteenPractical Mathematical Cryptography (eBook, ePUB)48,95 €
- Ioannis Konstantinos ArgyrosIterative Methods and Their Dynamics with Applications (eBook, PDF)48,95 €
- Vikrant SharmaAn Introduction to Optimization Techniques (eBook, PDF)115,95 €
- Advances of DNA Computing in Cryptography (eBook, PDF)52,95 €
- Mathematics in Cyber Research (eBook, PDF)171,95 €
- Information Security and Optimization (eBook, PDF)50,95 €
- Harsh Kupwade PatilSecurity for Wireless Sensor Networks using Identity-Based Cryptography (eBook, PDF)39,95 €
-
-
-
This book provides a clear and accessible introduction to practical mathematical cryptography. The presentation provides a unified and consistent treatment of the most important cryptographic topics, from the initial design and analysis of basic cryptographic schemes towards applications.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 546
- Erscheinungstermin: 17. August 2022
- Englisch
- ISBN-13: 9781000630770
- Artikelnr.: 64156084
- Verlag: Taylor & Francis
- Seitenzahl: 546
- Erscheinungstermin: 17. August 2022
- Englisch
- ISBN-13: 9781000630770
- Artikelnr.: 64156084
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Kristian Gjosteen is a professor of mathematical cryptography at NTNU - Norwegian University of Science and Technology. Gjosteen has worked on cryptographic voting, electronic identification, privacy, public key encryption and key exchange.
1. Symmetric Cryptography. 1.1. Definitions. 1.2. Confidentiality against
Eavesdroppers. 1.3. Integrity. 1.4. Confidentiality and Integrity. 1.5. The
Key Distribution Problem. 2. Key Exchange and Diffie-Hellman. 2.1. The
Diffie-Hellman Protocol. 2.2. Discrete Logarithms. 2.3. Primality Testing.
2.4. Finite Fields. 2.5. Elliptic Curves. 2.6. Active Attacks. 3. Public
Key Encryption. 3.1. Definitions. 3.2. Schemes Based On Diffie-Hellman.
3.3. RSA. 3.4. Factoring Integers. 3.5. Lattices. 3.6 Lattice-Based
Cryptosystems. 3.7. Lattice Algorithms. 3.8. The Public Key Infrastructure
Problem. 4. Digital Signatures. 4.1. Definitions. 4.2. Hash Functions. 4.3.
RSA Signatures. 4.4. Schnorr Signatures. 4.5. Hash-Based Signatures. 4.6.
Securing Diffie-Hellman. 4.7 The Public Key Infrastructure Problem. 5.
Factoring Using Quantum Computers. 5.1. Background. 5.2. Quantum
Computation. 5.3. Factoring using a Quantum Computer. 6. Computational
Problems. 6.1. Definitions. 6.2. Statistical Distance. 6.3. Diffie-Hellman.
6.4 RSA. 6.5. Lattice Problems. 7. Symmetric Cryptography. 7.1. Defining
Security. 7.2. Confidentiality and Underlying Primitives. 7.3. Message
Authentication Codes. 7.4. Channels. 7.5. Hash Functions. 7.6. Ideal
Models. 8. Public Key Encryption. 8.1 Defining. Security. 8.2. Key
Encapsulation Mechanisms. 8.3. Homomorphic Encryption. 8.4. Commitment
Schemes. 8.5. Cryptographic Voting. 9. Digital Signatures. 9.1. Defining
Securiy. 9.2. Hash and Sign Paradigm. 9.3. Identification Schemes. 9.4.
Messaging. 10. Key Exchange. 10.1. Key Exchange Protocols. 10.2. Defining
Security. 10.3 Key Exchange from Key Encapsulation. 10.4. Single-Message
Key Exchange. 10.5. Single-Sided Authentication. 10.6. Continuous Key
Exchange. 11. Arguments. 11.1. Arguments. 11.2 Non-Interactive Arguments.
11.3. Using HVZK. 11.4. Further Useful Arguments. 12. Multi-party
computation. 12.1. Secret Sharing. 12.2 Multi-Party Computation. 12.3.
Distributed Decryption. 13. Messaging Protocols. 13.1 Messaging Protocols.
13.2. Defining Security. 13.3. Invasive Adversaries. 13.4. Somewhat
Anonymous Messaging. 14. Cryptographic Voting. 14.1 Definitions. 14.2. How
to Use a Voting Scheme. 14.3. Cast as Intended. 14.4. Coercion Resistance.
Index.
Eavesdroppers. 1.3. Integrity. 1.4. Confidentiality and Integrity. 1.5. The
Key Distribution Problem. 2. Key Exchange and Diffie-Hellman. 2.1. The
Diffie-Hellman Protocol. 2.2. Discrete Logarithms. 2.3. Primality Testing.
2.4. Finite Fields. 2.5. Elliptic Curves. 2.6. Active Attacks. 3. Public
Key Encryption. 3.1. Definitions. 3.2. Schemes Based On Diffie-Hellman.
3.3. RSA. 3.4. Factoring Integers. 3.5. Lattices. 3.6 Lattice-Based
Cryptosystems. 3.7. Lattice Algorithms. 3.8. The Public Key Infrastructure
Problem. 4. Digital Signatures. 4.1. Definitions. 4.2. Hash Functions. 4.3.
RSA Signatures. 4.4. Schnorr Signatures. 4.5. Hash-Based Signatures. 4.6.
Securing Diffie-Hellman. 4.7 The Public Key Infrastructure Problem. 5.
Factoring Using Quantum Computers. 5.1. Background. 5.2. Quantum
Computation. 5.3. Factoring using a Quantum Computer. 6. Computational
Problems. 6.1. Definitions. 6.2. Statistical Distance. 6.3. Diffie-Hellman.
6.4 RSA. 6.5. Lattice Problems. 7. Symmetric Cryptography. 7.1. Defining
Security. 7.2. Confidentiality and Underlying Primitives. 7.3. Message
Authentication Codes. 7.4. Channels. 7.5. Hash Functions. 7.6. Ideal
Models. 8. Public Key Encryption. 8.1 Defining. Security. 8.2. Key
Encapsulation Mechanisms. 8.3. Homomorphic Encryption. 8.4. Commitment
Schemes. 8.5. Cryptographic Voting. 9. Digital Signatures. 9.1. Defining
Securiy. 9.2. Hash and Sign Paradigm. 9.3. Identification Schemes. 9.4.
Messaging. 10. Key Exchange. 10.1. Key Exchange Protocols. 10.2. Defining
Security. 10.3 Key Exchange from Key Encapsulation. 10.4. Single-Message
Key Exchange. 10.5. Single-Sided Authentication. 10.6. Continuous Key
Exchange. 11. Arguments. 11.1. Arguments. 11.2 Non-Interactive Arguments.
11.3. Using HVZK. 11.4. Further Useful Arguments. 12. Multi-party
computation. 12.1. Secret Sharing. 12.2 Multi-Party Computation. 12.3.
Distributed Decryption. 13. Messaging Protocols. 13.1 Messaging Protocols.
13.2. Defining Security. 13.3. Invasive Adversaries. 13.4. Somewhat
Anonymous Messaging. 14. Cryptographic Voting. 14.1 Definitions. 14.2. How
to Use a Voting Scheme. 14.3. Cast as Intended. 14.4. Coercion Resistance.
Index.
1. Symmetric Cryptography. 1.1. Definitions. 1.2. Confidentiality against
Eavesdroppers. 1.3. Integrity. 1.4. Confidentiality and Integrity. 1.5. The
Key Distribution Problem. 2. Key Exchange and Diffie-Hellman. 2.1. The
Diffie-Hellman Protocol. 2.2. Discrete Logarithms. 2.3. Primality Testing.
2.4. Finite Fields. 2.5. Elliptic Curves. 2.6. Active Attacks. 3. Public
Key Encryption. 3.1. Definitions. 3.2. Schemes Based On Diffie-Hellman.
3.3. RSA. 3.4. Factoring Integers. 3.5. Lattices. 3.6 Lattice-Based
Cryptosystems. 3.7. Lattice Algorithms. 3.8. The Public Key Infrastructure
Problem. 4. Digital Signatures. 4.1. Definitions. 4.2. Hash Functions. 4.3.
RSA Signatures. 4.4. Schnorr Signatures. 4.5. Hash-Based Signatures. 4.6.
Securing Diffie-Hellman. 4.7 The Public Key Infrastructure Problem. 5.
Factoring Using Quantum Computers. 5.1. Background. 5.2. Quantum
Computation. 5.3. Factoring using a Quantum Computer. 6. Computational
Problems. 6.1. Definitions. 6.2. Statistical Distance. 6.3. Diffie-Hellman.
6.4 RSA. 6.5. Lattice Problems. 7. Symmetric Cryptography. 7.1. Defining
Security. 7.2. Confidentiality and Underlying Primitives. 7.3. Message
Authentication Codes. 7.4. Channels. 7.5. Hash Functions. 7.6. Ideal
Models. 8. Public Key Encryption. 8.1 Defining. Security. 8.2. Key
Encapsulation Mechanisms. 8.3. Homomorphic Encryption. 8.4. Commitment
Schemes. 8.5. Cryptographic Voting. 9. Digital Signatures. 9.1. Defining
Securiy. 9.2. Hash and Sign Paradigm. 9.3. Identification Schemes. 9.4.
Messaging. 10. Key Exchange. 10.1. Key Exchange Protocols. 10.2. Defining
Security. 10.3 Key Exchange from Key Encapsulation. 10.4. Single-Message
Key Exchange. 10.5. Single-Sided Authentication. 10.6. Continuous Key
Exchange. 11. Arguments. 11.1. Arguments. 11.2 Non-Interactive Arguments.
11.3. Using HVZK. 11.4. Further Useful Arguments. 12. Multi-party
computation. 12.1. Secret Sharing. 12.2 Multi-Party Computation. 12.3.
Distributed Decryption. 13. Messaging Protocols. 13.1 Messaging Protocols.
13.2. Defining Security. 13.3. Invasive Adversaries. 13.4. Somewhat
Anonymous Messaging. 14. Cryptographic Voting. 14.1 Definitions. 14.2. How
to Use a Voting Scheme. 14.3. Cast as Intended. 14.4. Coercion Resistance.
Index.
Eavesdroppers. 1.3. Integrity. 1.4. Confidentiality and Integrity. 1.5. The
Key Distribution Problem. 2. Key Exchange and Diffie-Hellman. 2.1. The
Diffie-Hellman Protocol. 2.2. Discrete Logarithms. 2.3. Primality Testing.
2.4. Finite Fields. 2.5. Elliptic Curves. 2.6. Active Attacks. 3. Public
Key Encryption. 3.1. Definitions. 3.2. Schemes Based On Diffie-Hellman.
3.3. RSA. 3.4. Factoring Integers. 3.5. Lattices. 3.6 Lattice-Based
Cryptosystems. 3.7. Lattice Algorithms. 3.8. The Public Key Infrastructure
Problem. 4. Digital Signatures. 4.1. Definitions. 4.2. Hash Functions. 4.3.
RSA Signatures. 4.4. Schnorr Signatures. 4.5. Hash-Based Signatures. 4.6.
Securing Diffie-Hellman. 4.7 The Public Key Infrastructure Problem. 5.
Factoring Using Quantum Computers. 5.1. Background. 5.2. Quantum
Computation. 5.3. Factoring using a Quantum Computer. 6. Computational
Problems. 6.1. Definitions. 6.2. Statistical Distance. 6.3. Diffie-Hellman.
6.4 RSA. 6.5. Lattice Problems. 7. Symmetric Cryptography. 7.1. Defining
Security. 7.2. Confidentiality and Underlying Primitives. 7.3. Message
Authentication Codes. 7.4. Channels. 7.5. Hash Functions. 7.6. Ideal
Models. 8. Public Key Encryption. 8.1 Defining. Security. 8.2. Key
Encapsulation Mechanisms. 8.3. Homomorphic Encryption. 8.4. Commitment
Schemes. 8.5. Cryptographic Voting. 9. Digital Signatures. 9.1. Defining
Securiy. 9.2. Hash and Sign Paradigm. 9.3. Identification Schemes. 9.4.
Messaging. 10. Key Exchange. 10.1. Key Exchange Protocols. 10.2. Defining
Security. 10.3 Key Exchange from Key Encapsulation. 10.4. Single-Message
Key Exchange. 10.5. Single-Sided Authentication. 10.6. Continuous Key
Exchange. 11. Arguments. 11.1. Arguments. 11.2 Non-Interactive Arguments.
11.3. Using HVZK. 11.4. Further Useful Arguments. 12. Multi-party
computation. 12.1. Secret Sharing. 12.2 Multi-Party Computation. 12.3.
Distributed Decryption. 13. Messaging Protocols. 13.1 Messaging Protocols.
13.2. Defining Security. 13.3. Invasive Adversaries. 13.4. Somewhat
Anonymous Messaging. 14. Cryptographic Voting. 14.1 Definitions. 14.2. How
to Use a Voting Scheme. 14.3. Cast as Intended. 14.4. Coercion Resistance.
Index.