38,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

The use of impact rollers has increased for many decades over a wide variety of applications in various parts of the world. Many manufacturers have made claims that impact compaction rollers could have an effect to 1 m or more. In addition, other positive features such as greater depth of influence and faster travel speed than conventional rollers are being reported from the field. However, there is a lack of theoretical explanations or scientific research information for how to operate these rollers. Hence, this study will focus on a geotechnical modeling that describes the behavior of soils…mehr

Produktbeschreibung
The use of impact rollers has increased for many decades over a wide variety of applications in various parts of the world. Many manufacturers have made claims that impact compaction rollers could have an effect to 1 m or more. In addition, other positive features such as greater depth of influence and faster travel speed than conventional rollers are being reported from the field. However, there is a lack of theoretical explanations or scientific research information for how to operate these rollers. Hence, this study will focus on a geotechnical modeling that describes the behavior of soils during ground compaction using various impact rollers (e.g., triangular, Landpac 3-sided, Landpac 5-sided, and octagonal shapes). In addition, this study will estimate more precisely the depth of influence for impact rollers.
Autorenporträt
Kukjoo Kim received a Bachelor of Engineering degree in the Department of Civil Engineering from the Korea Military Academy, Korea, in March 2001. He was then commissioned as an Engineering Officer in 2001. He had applied for a ROKArmy overseas education scholarship that gives him the opportunity to pursue a Mater Degree at the Texas A&M University