42,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
21 °P sammeln
  • Broschiertes Buch

In this study, I have developed new variants of bio-inspired optimization algorithms such as chaotic antlion optimization (CALO), binary grey wolf optimization (BGWO), and much more. With the big data captured in the pharmaceutical product development practice, computational intelligence (CI) models based on machine learning and bio-inspired optimization algorithms could potentially be used to identify critical quality attributes (CQA) and critical process parameters (CPP) for the formulations and manufacturing processes. The primary objective is to evaluate the robustness of machine learning…mehr

Produktbeschreibung
In this study, I have developed new variants of bio-inspired optimization algorithms such as chaotic antlion optimization (CALO), binary grey wolf optimization (BGWO), and much more. With the big data captured in the pharmaceutical product development practice, computational intelligence (CI) models based on machine learning and bio-inspired optimization algorithms could potentially be used to identify critical quality attributes (CQA) and critical process parameters (CPP) for the formulations and manufacturing processes. The primary objective is to evaluate the robustness of machine learning techniques combined with bio-inspired optimization algorithms in modeling tablet manufacturing processes. More precisely, our effort is focused on the prediction of tablet properties such as porosity and tensile strength from powder and ribbons characteristics.
Autorenporträt
Hossam M. Zawbaa is a Lecturer at Faculty of Computers and Information, Beni-Suef University, Egypt. His research interests are in the area of Computational Intelligence, Machine Learning, Image Processing, and Pattern Recognition. They include both theoretical and algorithmic improvement as well as applications for various problems and domains.