44,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
22 °P sammeln
  • Broschiertes Buch

This work investigates the flow boiling heat transfer in microchannels with the aim of developing compact cooling systems which can be adapted to miniaturized power components. Nano and micro-surface treatments were used as innovative techniques to improve the heat transfer performance as well as to delay the intermittent dryout. Initially,pool-boiling experiments were performed to highlight the impact of nanocoatings on nucleate-boiling mechanisms. It was observed that the surface wettability modified by nanoparticle deposition had significant effects on the boiling processes. Afterwards, a…mehr

Produktbeschreibung
This work investigates the flow boiling heat transfer in microchannels with the aim of developing compact cooling systems which can be adapted to miniaturized power components. Nano and micro-surface treatments were used as innovative techniques to improve the heat transfer performance as well as to delay the intermittent dryout. Initially,pool-boiling experiments were performed to highlight the impact of nanocoatings on nucleate-boiling mechanisms. It was observed that the surface wettability modified by nanoparticle deposition had significant effects on the boiling processes. Afterwards, a second experimental campaign was conducted to investigate the flow boiling in a microchannel with nanocoated and microstructured samples. These studies highlighted the impacts of surface wettability and of micro-patterning on two-phase flow patterns, pressure drop and heat transfer coefficient. In particular, significant enhancements in heat transfer coefficient and in intermittent dryout were obtained with micro structured samples.
Autorenporträt
Hai Trieu PHAN received his Ph.D. degree from the GrenobleInstitute of Technology (Grenoble INP) in 2010 and hisEngineering degree from the National Institute of AppliedSciences (INSA de Lyon) in 2007. His research focuses onthe areas of boiling heat transfer, capillary effects, loopheat pipes and advanced cooling techniques.