67,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
  • Gebundenes Buch

In this monograph, an accurate ultrasonic method for measurement of small motion and deformation of biological tissue is described. In the displacement estimation based on the phase change of echoes, the displacement estimates are biased when the center frequency of the RF echo changes. Such an apparent change in the center frequency could be caused by the interference of echoes from scatterers. To reduce the influence of the center frequency variation on the estimation of motion and deformation, an error correcting function, which does not require the assumption that the center frequency…mehr

Produktbeschreibung
In this monograph, an accurate ultrasonic method for measurement of small motion and deformation of biological tissue is described. In the displacement estimation based on the phase change of echoes, the displacement estimates are biased when the center frequency of the RF echo changes. Such an apparent change in the center frequency could be caused by the interference of echoes from scatterers. To reduce the influence of the center frequency variation on the estimation of motion and deformation, an error correcting function, which does not require the assumption that the center frequency distributions in 2 different frames are the same, was introduced. As a result, the proposed method provides better strain estimates in comparison with conventional phase-sensitive correlation methods. This monograph also shows examples of applications of this method to measurement of small motion and deformation of biological tissues. This method can be applied to measurement of elasticity of dynamic tissues, such as the artery. Also, elastic properties of static tissues can be also measured by combining with actuation using the acoustic radiation force.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Hideyuki Hasegawa was born in Oyama, Japan, in 1973. He received a B.E. degree from Tohoku University, Sendai, Japan, in 1996. He received a Ph.D. degree from Tohoku University in 2001. He is presently an associate professor in the Graduate School of Biomedical Engineering, Tohoku University. His main research interest is medical ultrasound, especially diagnosis of atherosclerosis based on measurements of motion and mechanical properties of the arterial wall. Dr. Hasegawa is a member of the IEEE, the Acoustical Society of Japan, the Japan Society of Ultrasonics in Medicine, and the Institute of Electronics, Information and Communication Engineers.