Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book describes the development of the power matching problem. It starts with the derivative-free proof of conjugate matching, goes through the nonlinear, resistive maximum power theorem and its reversal, extension of the concept of equivalence in the case of nonlinear circuits, application of the nonlinear, and resistive maximum power theorem for diode measurement. The author treats practically important special cases of nonlinear, dynamic power matching with applications, and the most general solution that is not realizable.
This book describes the development of the power matching problem. It starts with the derivative-free proof of conjugate matching, goes through the nonlinear, resistive maximum power theorem and its reversal, extension of the concept of equivalence in the case of nonlinear circuits, application of the nonlinear, and resistive maximum power theorem for diode measurement. The author treats practically important special cases of nonlinear, dynamic power matching with applications, and the most general solution that is not realizable.
Dr. J. Ladvánszky has an MSc degree in electrical engineering from the Budapest University of Technology and Economics in 1978, and a PhD degree in microwave circuits from the Hungarian Academy of Sciences in 1988. He is just before defending his DSc degree in optics from the Hungarian Academy of Sciences. His present interest is circuit and system theory with microwave and optical applications.
Inhaltsangabe
Chapter 1. Introduction: Importance.- Chapter 2. Overview.- Chapter 3. Linear, time invariant one ports: A derivative-free proof of the global optimum.- Chapter 4. Nonlinear, resistive case.- Chapter 5. Linear multiports, competitive power matching (Lin).- Chapter 6. The scattering matrix (Belevitch approach), with application to broadband matching.- Chapter 7. Foundation concepts based on power matching (Youla, Castriota, Carlin).- Chapter 8. Special cases: Describing functions and weakly nonlinear case (Own results).- Chapter 9. The most general solution (Wyatt).- Chapter 10. Conclusions.
Chapter 1. Introduction: Importance.- Chapter 2. Overview.- Chapter 3. Linear, time invariant one ports: A derivative-free proof of the global optimum.- Chapter 4. Nonlinear, resistive case.- Chapter 5. Linear multiports, competitive power matching (Lin).- Chapter 6. The scattering matrix (Belevitch approach), with application to broadband matching.- Chapter 7. Foundation concepts based on power matching (Youla, Castriota, Carlin).- Chapter 8. Special cases: Describing functions and weakly nonlinear case (Own results).- Chapter 9. The most general solution (Wyatt).- Chapter 10. Conclusions.
Chapter 1. Introduction: Importance.- Chapter 2. Overview.- Chapter 3. Linear, time invariant one ports: A derivative-free proof of the global optimum.- Chapter 4. Nonlinear, resistive case.- Chapter 5. Linear multiports, competitive power matching (Lin).- Chapter 6. The scattering matrix (Belevitch approach), with application to broadband matching.- Chapter 7. Foundation concepts based on power matching (Youla, Castriota, Carlin).- Chapter 8. Special cases: Describing functions and weakly nonlinear case (Own results).- Chapter 9. The most general solution (Wyatt).- Chapter 10. Conclusions.
Chapter 1. Introduction: Importance.- Chapter 2. Overview.- Chapter 3. Linear, time invariant one ports: A derivative-free proof of the global optimum.- Chapter 4. Nonlinear, resistive case.- Chapter 5. Linear multiports, competitive power matching (Lin).- Chapter 6. The scattering matrix (Belevitch approach), with application to broadband matching.- Chapter 7. Foundation concepts based on power matching (Youla, Castriota, Carlin).- Chapter 8. Special cases: Describing functions and weakly nonlinear case (Own results).- Chapter 9. The most general solution (Wyatt).- Chapter 10. Conclusions.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/neu