36,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
18 °P sammeln
  • Broschiertes Buch

An estimated 35% of the human proteome is intrinsically disordered. Disordered proteins play a key role in physiologic and pathologic regulation, recognition, and signaling making protein disorder the subject of increasing investigation. Since disordered samples do not generate x-ray quality crystals and since they have conformations that interconvert faster than the time resolution of NMR or ESR, little is known about their structure or function. By combining isotope-edited two-dimensional infrared spectroscopy (2D IR) with spectral modeling based on molecular dynamics simulations, this work…mehr

Produktbeschreibung
An estimated 35% of the human proteome is intrinsically disordered. Disordered proteins play a key role in physiologic and pathologic regulation, recognition, and signaling making protein disorder the subject of increasing investigation. Since disordered samples do not generate x-ray quality crystals and since they have conformations that interconvert faster than the time resolution of NMR or ESR, little is known about their structure or function. By combining isotope-edited two-dimensional infrared spectroscopy (2D IR) with spectral modeling based on molecular dynamics simulations, this work will show that one can measure the residual structure and conformational heterogeneity of a putatively disordered sequence.
Autorenporträt
Dr. Lessing received a Sc.B. in Chemistry from Brown University in 2004 and a Ph.D. in Physical Chemistry from M.I.T. in 2012. Next, he was a postdoctoral fellow in the laboratory of George Whitesides at Harvard University. Currently he works for Soft Robotics Inc. an early stage startup company developing a new class of robotic actuators.