128,39 €
inkl. MwSt.
Sofort per Download lieferbar
  • Format: PDF

This book takes a pragmatic approach to deploying state-of-the-art optical networking equipment in metro-core and backbone networks. The book is oriented towards practical implementation of optical network design. Algorithms and methodologies related to routing, regeneration, wavelength assignment, sub rate-traffic grooming and protection are presented, with an emphasis on optical-bypass-enabled (or all-optical) networks. The author has emphasized the economics of optical networking, with a full chapter of economic studies that offer guidelines as to when and how optical-bypass technology…mehr

Produktbeschreibung
This book takes a pragmatic approach to deploying state-of-the-art optical networking equipment in metro-core and backbone networks. The book is oriented towards practical implementation of optical network design. Algorithms and methodologies related to routing, regeneration, wavelength assignment, sub rate-traffic grooming and protection are presented, with an emphasis on optical-bypass-enabled (or all-optical) networks. The author has emphasized the economics of optical networking, with a full chapter of economic studies that offer guidelines as to when and how optical-bypass technology should be deployed. This new edition contains: new chapter on dynamic optical networking and a new chapter on flexible/elastic optical networks. Expanded coverage of new physical-layer technology (e.g., coherent detection) and its impact on network design and enhanced coverage of ROADM architectures and properties, including colorless, directionless, contentionless and gridless. Covers‘hot’ topics, such as Software Defined Networking and energy efficiency, algorithmic advancements and techniques, especially in the area of impairment-aware routing and wavelength assignment. Provides more illustrative examples of concepts are provided, using three reference networks (the topology files for the networks are provided on a web site, for further studies by the reader). Also exercises have been added at the end of the chapters to enhance the book’s utility as a course textbook.
Autorenporträt
Dr. Jane M. Simmons received her Ph.D. in Electrical Engineering at MIT. She co-founded Monarch Network Architects in 2003. She continues to work with an array of customers, both in industry and the government, developing algorithms and performing network designs and economic studies.

The author has been teaching an OFC short-course related to the book topic for ten years; she has also published numerous papers on the subject of optical network design, including several invited papers.