Products with complicated shapes require superior surface finish to perform the intended function. Despite significant developments in technology, finishing operations are still performed semi automatically/manually, relying on the skills of the machinist. The pressure to produce products at the best quality in the shortest lead time has made it highly inconvenient to depend on traditional methods. Thus, there is a rising need for automation which has become a resource to remain competitive in the manufacturing industry. Diminishing return of trading quality over time in finishing operations signifies the importance of having a pre-determined trajectory (tool path) that produces an optimum surface in the least possible machining time. Tool path optimization for finishing process considering tool kinematics is of relatively low importance in the present scenario. The available automation in polishing processes encompass around the dynamics of machining. An overview of optimizing the tool path using evolutionary algorithms, considering the significance of process dynamics and kinematics for superior performance has been presented.