- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Semimartingale Theory and Stochastic Calculus presents a systematic and detailed account of the general theory of stochastic processes, the semimartingale theory, and related stochastic calculus
Andere Kunden interessierten sich auch für
- Zhe George Zhang (Bellingham Western Washington University)Fundamentals of Stochastic Models203,99 €
- Heinrich von WeizsäckerStochastic Integrals64,99 €
- Damien LambertonIntroduction to Stochastic Calculus Applied to Finance130,99 €
- Thomas Mikosch (Denmark Univ Of Copenhagen)ELEMENTARY STOCHASTIC CALCULUS,... (V6)61,99 €
- David Applebaum (University of Sheffield)Levy Processes and Stochastic Calculus96,99 €
- Mumford, David, QCPattern Theory116,99 €
- Robert P. HainingModelling Spatial and Spatial-Temporal Data147,99 €
-
-
-
Semimartingale Theory and Stochastic Calculus presents a systematic and detailed account of the general theory of stochastic processes, the semimartingale theory, and related stochastic calculus
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis Inc
- Seitenzahl: 562
- Erscheinungstermin: 14. September 1992
- Englisch
- Abmessung: 240mm x 161mm x 35mm
- Gewicht: 936g
- ISBN-13: 9780849377150
- ISBN-10: 0849377153
- Artikelnr.: 21731771
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: Taylor & Francis Inc
- Seitenzahl: 562
- Erscheinungstermin: 14. September 1992
- Englisch
- Abmessung: 240mm x 161mm x 35mm
- Gewicht: 936g
- ISBN-13: 9780849377150
- ISBN-10: 0849377153
- Artikelnr.: 21731771
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
He Sheng-Wu, Jia-Gang Wang, Jia-an Yan
PRELIMINARIES. Monotone Class Theorems. Uniform Integrability. Essential
Supremum. The Generalization of Conditional Expectation. Analytic Sets and
Choquet Capacity. Lebesgue-Stieltjes Integrals. CLASSICAL MARTINGALE
THEORY. Elementary Inequalities. Convergence Theorems. Decomposition
Theorems for Supermartingales. Doob's Stopping Theorem. Martingales with
Continuous Time. Processes with Independent Increments. PROCESSES AND
STOPPING TIMES. Stopping Times. Progressive Measurable, Optional and
Predictable Processes. Predictable and Accessible Times. Processes with
Finite Variation. Changes of Time. SECTION THEROREMS AND THEIR
APPLICATIONS. Section Theorems. A.s. Foretellability of Predicatable Times.
Totally Inaccessible Times. Complete Filtrations and the Usual Conditions.
Applications to Martingales. PROJECTIONS OF PROCESSES. Projections of
Measurable Processes. Dual Projections of Increasing Processes.
Applications to Stopping Times and Processes. Doob-Meyer Decomposition
Theorem. Filtrations of Discrete Type. MARTINGALES WITH INTEGRABLE
VARIATION AND SQUARE INTEGRABLE MARTINGALES. Martingales with Integrable
Variation. Stable Subspaces of Square Integrable Martingales. The Structure
of Purely Discontinuous Square Integrable Martingales. Quadratic Variation.
LOCAL MARTINGALES. The Localization of Classes of Processes. The
Decomposition of Local Martingales. The Characterization of Jumps of Local
Martingales. SEMIMARTINGALES AND QUASIMARTINGALES. Semimartingales and
Special Semimartingales. Quasimartingales and Their Rao Decompositions.
Semimartingales on Stochastic Sets of Interval Type. Convergence Theorems
for Semimartingales. STOCHASTIC INTEGRALS. Stochastic Integrals of
Predictable Processes with Respect to Local Martingales. Compensated
Stochastic Integrals of Progressive Processes with Respect to Local
Martingales. Stochastic Integrals of Predictable Processes with Respect to
Semimartingales. Lenglart's Inequality and Convergence Theorems for
Stochastic Inte
Supremum. The Generalization of Conditional Expectation. Analytic Sets and
Choquet Capacity. Lebesgue-Stieltjes Integrals. CLASSICAL MARTINGALE
THEORY. Elementary Inequalities. Convergence Theorems. Decomposition
Theorems for Supermartingales. Doob's Stopping Theorem. Martingales with
Continuous Time. Processes with Independent Increments. PROCESSES AND
STOPPING TIMES. Stopping Times. Progressive Measurable, Optional and
Predictable Processes. Predictable and Accessible Times. Processes with
Finite Variation. Changes of Time. SECTION THEROREMS AND THEIR
APPLICATIONS. Section Theorems. A.s. Foretellability of Predicatable Times.
Totally Inaccessible Times. Complete Filtrations and the Usual Conditions.
Applications to Martingales. PROJECTIONS OF PROCESSES. Projections of
Measurable Processes. Dual Projections of Increasing Processes.
Applications to Stopping Times and Processes. Doob-Meyer Decomposition
Theorem. Filtrations of Discrete Type. MARTINGALES WITH INTEGRABLE
VARIATION AND SQUARE INTEGRABLE MARTINGALES. Martingales with Integrable
Variation. Stable Subspaces of Square Integrable Martingales. The Structure
of Purely Discontinuous Square Integrable Martingales. Quadratic Variation.
LOCAL MARTINGALES. The Localization of Classes of Processes. The
Decomposition of Local Martingales. The Characterization of Jumps of Local
Martingales. SEMIMARTINGALES AND QUASIMARTINGALES. Semimartingales and
Special Semimartingales. Quasimartingales and Their Rao Decompositions.
Semimartingales on Stochastic Sets of Interval Type. Convergence Theorems
for Semimartingales. STOCHASTIC INTEGRALS. Stochastic Integrals of
Predictable Processes with Respect to Local Martingales. Compensated
Stochastic Integrals of Progressive Processes with Respect to Local
Martingales. Stochastic Integrals of Predictable Processes with Respect to
Semimartingales. Lenglart's Inequality and Convergence Theorems for
Stochastic Inte
PRELIMINARIES. Monotone Class Theorems. Uniform Integrability. Essential
Supremum. The Generalization of Conditional Expectation. Analytic Sets and
Choquet Capacity. Lebesgue-Stieltjes Integrals. CLASSICAL MARTINGALE
THEORY. Elementary Inequalities. Convergence Theorems. Decomposition
Theorems for Supermartingales. Doob's Stopping Theorem. Martingales with
Continuous Time. Processes with Independent Increments. PROCESSES AND
STOPPING TIMES. Stopping Times. Progressive Measurable, Optional and
Predictable Processes. Predictable and Accessible Times. Processes with
Finite Variation. Changes of Time. SECTION THEROREMS AND THEIR
APPLICATIONS. Section Theorems. A.s. Foretellability of Predicatable Times.
Totally Inaccessible Times. Complete Filtrations and the Usual Conditions.
Applications to Martingales. PROJECTIONS OF PROCESSES. Projections of
Measurable Processes. Dual Projections of Increasing Processes.
Applications to Stopping Times and Processes. Doob-Meyer Decomposition
Theorem. Filtrations of Discrete Type. MARTINGALES WITH INTEGRABLE
VARIATION AND SQUARE INTEGRABLE MARTINGALES. Martingales with Integrable
Variation. Stable Subspaces of Square Integrable Martingales. The Structure
of Purely Discontinuous Square Integrable Martingales. Quadratic Variation.
LOCAL MARTINGALES. The Localization of Classes of Processes. The
Decomposition of Local Martingales. The Characterization of Jumps of Local
Martingales. SEMIMARTINGALES AND QUASIMARTINGALES. Semimartingales and
Special Semimartingales. Quasimartingales and Their Rao Decompositions.
Semimartingales on Stochastic Sets of Interval Type. Convergence Theorems
for Semimartingales. STOCHASTIC INTEGRALS. Stochastic Integrals of
Predictable Processes with Respect to Local Martingales. Compensated
Stochastic Integrals of Progressive Processes with Respect to Local
Martingales. Stochastic Integrals of Predictable Processes with Respect to
Semimartingales. Lenglart's Inequality and Convergence Theorems for
Stochastic Inte
Supremum. The Generalization of Conditional Expectation. Analytic Sets and
Choquet Capacity. Lebesgue-Stieltjes Integrals. CLASSICAL MARTINGALE
THEORY. Elementary Inequalities. Convergence Theorems. Decomposition
Theorems for Supermartingales. Doob's Stopping Theorem. Martingales with
Continuous Time. Processes with Independent Increments. PROCESSES AND
STOPPING TIMES. Stopping Times. Progressive Measurable, Optional and
Predictable Processes. Predictable and Accessible Times. Processes with
Finite Variation. Changes of Time. SECTION THEROREMS AND THEIR
APPLICATIONS. Section Theorems. A.s. Foretellability of Predicatable Times.
Totally Inaccessible Times. Complete Filtrations and the Usual Conditions.
Applications to Martingales. PROJECTIONS OF PROCESSES. Projections of
Measurable Processes. Dual Projections of Increasing Processes.
Applications to Stopping Times and Processes. Doob-Meyer Decomposition
Theorem. Filtrations of Discrete Type. MARTINGALES WITH INTEGRABLE
VARIATION AND SQUARE INTEGRABLE MARTINGALES. Martingales with Integrable
Variation. Stable Subspaces of Square Integrable Martingales. The Structure
of Purely Discontinuous Square Integrable Martingales. Quadratic Variation.
LOCAL MARTINGALES. The Localization of Classes of Processes. The
Decomposition of Local Martingales. The Characterization of Jumps of Local
Martingales. SEMIMARTINGALES AND QUASIMARTINGALES. Semimartingales and
Special Semimartingales. Quasimartingales and Their Rao Decompositions.
Semimartingales on Stochastic Sets of Interval Type. Convergence Theorems
for Semimartingales. STOCHASTIC INTEGRALS. Stochastic Integrals of
Predictable Processes with Respect to Local Martingales. Compensated
Stochastic Integrals of Progressive Processes with Respect to Local
Martingales. Stochastic Integrals of Predictable Processes with Respect to
Semimartingales. Lenglart's Inequality and Convergence Theorems for
Stochastic Inte