Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The book focuses on time-varying formation control approaches for practical nonlinear swarm systems. Time-varying formation control is the basic guarantee for performing other tasks of swarm systems, such as cooperative decision-making and cooperative detection. However, most practical swarm systems have nonlinear dynamic models. This book studies three typical models of practical nonlinear swarm systems, which represent most of the practical systems and construct the corresponding formation control structure. At the same time, the effects of disturbances, uncertain dynamics, random noise and…mehr
The book focuses on time-varying formation control approaches for practical nonlinear swarm systems. Time-varying formation control is the basic guarantee for performing other tasks of swarm systems, such as cooperative decision-making and cooperative detection. However, most practical swarm systems have nonlinear dynamic models. This book studies three typical models of practical nonlinear swarm systems, which represent most of the practical systems and construct the corresponding formation control structure. At the same time, the effects of disturbances, uncertain dynamics, random noise and unknown leader's input are considered and processed to improve the robustness and adaptability. The comprehensive and systematic treatment of practical nonlinear time-varying formation control issues is one of the major features of the book, which is particularly suited for readers who are interested to learn time-varying formation control solutions in nonlinear swarm systems. The book benefits researchers, engineers and graduate students in the fields of formation control, nonlinear control, robust control, etc.
Yu Jianglong received his bachelor's and doctor degrees from the School of Automation Science and Electrical Engineering at the Beijing University of Aeronautics and Astronautics in 2015 and 2020, respectively. From 2020 to 2022, he was a Postdoctoral Researcher with the School of Automation Science and Electrical Engineering, Beihang University. At present, he is an Associate Professor of Beihang University. His main research is the theory and application of cooperative guidance for aircraft swarm. A distributed cooperative encirclement hunting guidance method is proposed, which improves the cooperative interception ability of maneuvering targets and the cooperative attack ability of stationary targets. The relevant theoretical algorithms are verified in a variety of UAV swarms. As the first/corresponding author, he has published more than 20 high-level papers, including more than 10 SCI papers such as IEEE TCYB, IEEE TNNLS and CEP, and more than 10 EI papers and has obtained3 authorized national invention patents. He served as reviewer of IEEE Transaction on Cybernetics, ISA Transaction, as well as international and domestic journals such as Acta Aeronautica Sinica and Modern Defense Technology. He is a member of the three committee members of CICC. He presided over the fund of the National Natural Science Foundation of China and China Postdoctoral Science Foundation. He has won the first prize of Science and Technology Progress Award of CICC, Excellent Doctoral Thesis of CICC and Best Student Paper Award of 2021 CCSICC.
Inhaltsangabe
Introduction.- Preliminaries.- Time-varying formation tracking control for nonlinear swarm system with matched nonlinearity.- Time-varying formation tracking control for high-order strict-feedback nonlinear swarm system with a noncooperative leader.- Time-varying formation tracking control for high-order strict-feedback nonlinear swarm system with multiple leaders.- Time-varying formation tracking control for underactuated nonlinear swarm system.
Introduction.- Preliminaries.- Time-varying formation tracking control for nonlinear swarmsystem with matched nonlinearity.- Time-varying formation tracking control for high-orderstrict-feedback nonlinear swarm system with a noncooperative leader.- Time-varying formation tracking control for high-order strict-feedback nonlinear swarm system with multiple leaders.- Time-varying formation tracking control for underactuated nonlinear swarm system.
Introduction.- Preliminaries.- Time-varying formation tracking control for nonlinear swarm system with matched nonlinearity.- Time-varying formation tracking control for high-order strict-feedback nonlinear swarm system with a noncooperative leader.- Time-varying formation tracking control for high-order strict-feedback nonlinear swarm system with multiple leaders.- Time-varying formation tracking control for underactuated nonlinear swarm system.
Introduction.- Preliminaries.- Time-varying formation tracking control for nonlinear swarmsystem with matched nonlinearity.- Time-varying formation tracking control for high-orderstrict-feedback nonlinear swarm system with a noncooperative leader.- Time-varying formation tracking control for high-order strict-feedback nonlinear swarm system with multiple leaders.- Time-varying formation tracking control for underactuated nonlinear swarm system.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/neu