70,95 €
70,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
35 °P sammeln
70,95 €
70,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
35 °P sammeln
Als Download kaufen
70,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
35 °P sammeln
Jetzt verschenken
70,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
35 °P sammeln
  • Format: ePub

Spectral Geometry of Shapes presents unique shape analysis approaches based on shape spectrum in differential geometry. It provides insights on how to develop geometry-based methods for 3D shape analysis. The book is an ideal learning resource for graduate students and researchers in computer science, computer engineering and applied mathematics who have an interest in 3D shape analysis, shape motion analysis, image analysis, medical image analysis, computer vision and computer graphics. Due to the rapid advancement of 3D acquisition technologies there has been a big increase in 3D shape data…mehr

Produktbeschreibung
Spectral Geometry of Shapes presents unique shape analysis approaches based on shape spectrum in differential geometry. It provides insights on how to develop geometry-based methods for 3D shape analysis. The book is an ideal learning resource for graduate students and researchers in computer science, computer engineering and applied mathematics who have an interest in 3D shape analysis, shape motion analysis, image analysis, medical image analysis, computer vision and computer graphics. Due to the rapid advancement of 3D acquisition technologies there has been a big increase in 3D shape data that requires a variety of shape analysis methods, hence the need for this comprehensive resource.

  • Presents the latest advances in spectral geometric processing for 3D shape analysis applications, such as shape classification, shape matching, medical imaging, etc.
  • Provides intuitive links between fundamental geometric theories and real-world applications, thus bridging the gap between theory and practice
  • Describes new theoretical breakthroughs in applying spectral methods for non-isometric motion analysis
  • Gives insights for developing spectral geometry-based approaches for 3D shape analysis and deep learning of shape geometry

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Jing Hua is a Professor of Computer Science and the founding director of Computer Graphics and Imaging Lab (GIL) and Visualization Lab (VIS) at Computer Science at Wayne State University (WSU). He received his Ph.D. degree (2004) in Computer Science from the State University of New York at Stony Brook. He also received his M.S. degree (1999) in Pattern Recognition and Artificial Intelligence from the Institute of Automation, Chinese Academy of Sciences in Beijing, China and his B.S. degree (1996) in Electrical Engineering from the Huazhong University of Science & Technology in Wuhan, China. His research interests include Computer Graphics, Visualization, Image Analysis and Informatics, Computer Vision, etc. He received the Gaheon Award for the Best Paper of International Journal of CAD/CAM in 2009, the Best Paper Award at ACM Solid Modeling 2004, the WSU Faculty Research Award in 2005, the College of Liberal Arts and Sciences Excellence in Teaching Award in 2008, the K. C. Wong Research Award in 2010, and the Best Demo Awards at GENI Engineering Conference 21 (2014) and 23 (2015), respectively.