Bayesian statistics has been advancing in many aspects in recent years. Bayesian learning provides a natural framework for students to solve scientific problems. This book provides an introduction to Bayesian analysis for undergraduate students with calculus, statistics, and a computational background.
Bayesian statistics has been advancing in many aspects in recent years. Bayesian learning provides a natural framework for students to solve scientific problems. This book provides an introduction to Bayesian analysis for undergraduate students with calculus, statistics, and a computational background.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Jim Albert is a Distinguished University Professor of Statistics at Bowling Green State University. His research interests include Bayesian modeling and applications of statistical thinking in sports. He has authored or coauthored several books including Ordinal Data Modeling, Bayesian Computation with R, and Workshop Statistics: Discovery with Data, A Bayesian Approach. Jingchen (Monika) Hu is an Assistant Professor of Mathematics and Statistics at Vassar College. She teaches an undergraduate-level Bayesian Statistics course at Vassar, which is shared online across several liberal arts colleges. Her research focuses on dealing with data privacy issues by releasing synthetic data.
Inhaltsangabe
1. Introduction, examples and review. 2. Why Bayes? 3. One-parameter models. 4. Monte Carlo approximation. 5. Normal models. 6. Gibbs sampler. 7. Metropolis-Hastings algorithms, BUGS. 8. Bayesian hierarchical modeling. 9. Multivariate normal models. 10. Bayesian linear regression. 11. Bayesian model comparison, variable selection and model selection. 12. Applications.