This work develops critical new ideas and methods for the analysis of elliptic PDEs on compact Riemannian manifolds, especially in the framework of the Yamabe equation, critical Sobolev embedding and blow-up techniques (asymptotic analysis).
This work develops critical new ideas and methods for the analysis of elliptic PDEs on compact Riemannian manifolds, especially in the framework of the Yamabe equation, critical Sobolev embedding and blow-up techniques (asymptotic analysis).Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Olivier Druet is Researcher at CNRS, Ecole Normale Supérieure de Lyon. Emmanuel Hebey is Professor at Université de Cergy-Pontoise. Frédéric Robert is Associate Professor at Université de Nice Sophia-Antipolis.
Inhaltsangabe
Preface vii Chapter 1. Background Material 1 1.1 Riemannian Geometry 1 1.2 Basics in Nonlinear Analysis 7 Chapter 2. The Model Equations 13 2.1 Palais-Smale Sequences 14 2.2 Strong Solutions of Minimal Energy 17 2.3 Strong Solutions of High Energies 19 2.4 The Case of the Sphere 23 Chapter 3. Blow-up Theory in Sobolev Spaces 25 3.1 The H 2/1-Decomposition for Palais-Smale Sequences 26 3.2 Subtracting a Bubble and Nonnegative Solutions 32 3.3 The De Giorgi-Nash-Moser Iterative Scheme for Strong Solutions 45 Chapter 4. Exhaustion and Weak Pointwise Estimates 51 4.1 Weak Pointwise Estimates 52 4.2 Exhaustion of Blow-up Points 54 Chapter 5. Asymptotics When the Energy Is of Minimal Type 67 5.1 Strong Convergence and Blow-up 68 5.2 Sharp Pointwise Estimates 72 Chapter 6. Asymptotics When the Energy Is Arbitrary 83 6.1 A Fundamental Estimate: 1 88 6.2 A Fundamental Estimate: 2 143 6.3 Asymptotic Behavior 182 Appendix A. The Green's Function on Compact Manifolds 201 Appendix B. Coercivity Is a Necessary Condition 209 Bibliography 213
Preface vii Chapter 1. Background Material 1 1.1 Riemannian Geometry 1 1.2 Basics in Nonlinear Analysis 7 Chapter 2. The Model Equations 13 2.1 Palais-Smale Sequences 14 2.2 Strong Solutions of Minimal Energy 17 2.3 Strong Solutions of High Energies 19 2.4 The Case of the Sphere 23 Chapter 3. Blow-up Theory in Sobolev Spaces 25 3.1 The H 2/1-Decomposition for Palais-Smale Sequences 26 3.2 Subtracting a Bubble and Nonnegative Solutions 32 3.3 The De Giorgi-Nash-Moser Iterative Scheme for Strong Solutions 45 Chapter 4. Exhaustion and Weak Pointwise Estimates 51 4.1 Weak Pointwise Estimates 52 4.2 Exhaustion of Blow-up Points 54 Chapter 5. Asymptotics When the Energy Is of Minimal Type 67 5.1 Strong Convergence and Blow-up 68 5.2 Sharp Pointwise Estimates 72 Chapter 6. Asymptotics When the Energy Is Arbitrary 83 6.1 A Fundamental Estimate: 1 88 6.2 A Fundamental Estimate: 2 143 6.3 Asymptotic Behavior 182 Appendix A. The Green's Function on Compact Manifolds 201 Appendix B. Coercivity Is a Necessary Condition 209 Bibliography 213
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826