- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
A detailed account of main results in the theory of differential tensor algebras.
Andere Kunden interessierten sich auch für
- Andy R. MagidModule Categories of Analytic Groups44,99 €
- Robert R ColbyEquivalence and Duality for Module Categories (with Tilting and Cotilting for Rings)156,99 €
- Stefaan CaenepeelFrobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations42,99 €
- Jirí AdámekAutomata and Algebras in Categories83,99 €
- Pierre CartierClassical Hopf Algebras and Their Applications95,99 €
- Pierre CartierClassical Hopf Algebras and Their Applications95,99 €
- Rüdiger GöbelApproximations and Endomorphism Algebras of Modules240,00 €
-
-
-
A detailed account of main results in the theory of differential tensor algebras.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 464
- Erscheinungstermin: 17. September 2009
- Englisch
- Abmessung: 229mm x 152mm x 25mm
- Gewicht: 667g
- ISBN-13: 9780521757683
- ISBN-10: 0521757681
- Artikelnr.: 26393272
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 464
- Erscheinungstermin: 17. September 2009
- Englisch
- Abmessung: 229mm x 152mm x 25mm
- Gewicht: 667g
- ISBN-13: 9780521757683
- ISBN-10: 0521757681
- Artikelnr.: 26393272
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
R. Bautista is a Professor in the Institute of Mathematics at the National University of Mexico, Morelia.
Preface; 1. t-algebras and differentials; 2. Ditalgebras and modules; 3. Bocses, ditalgebras and modules; 4. Layered ditalgebras; 5. Triangular ditalgebras; 6. Exact structures in A-Mod; 7. Almost split conflations in A-Mod; 8. Quotient ditalgebras; 9. Frames and Roiter ditalgebras; 10. Product of ditalgebras; 11. Hom-tensor relations and dual basis; 12. Admissible modules; 13. Complete admissible modules; 14. Bimodule ltrations and triangular admissible modules; 15. Free bimodule ltrations and free ditalgebras; 16. AX is a Roiter ditalgebra, for suitable X; 17. Examples and applications; 18. The exact categories P(
), P1(
) and
-Mod; 19. Passage from ditalgebras to finite dimensional algebras; 20. Scalar extension and ditalgebras; 21. Bimodules; 22. Parametrizing bimodules and wildness; 23. Nested and seminested ditalgebras; 24. Critical ditalgebras; 25. Reduction functors; 26. Modules over non-wild ditalgebras; 27. Tameness and wildness; 28. Modules over non-wild ditalgebras revisited; 29. Modules over non-wild algebras; 30. Absolute wildness; 31. Generic modules and tameness; 32. Almost split sequences and tameness; 33. Varieties of modules over ditalgebras; 34. Ditalgebras of partially ordered sets; 35. Further examples of wild ditalgebras; 36. Answers to selected exercises; References; Index.
), P1(
) and
-Mod; 19. Passage from ditalgebras to finite dimensional algebras; 20. Scalar extension and ditalgebras; 21. Bimodules; 22. Parametrizing bimodules and wildness; 23. Nested and seminested ditalgebras; 24. Critical ditalgebras; 25. Reduction functors; 26. Modules over non-wild ditalgebras; 27. Tameness and wildness; 28. Modules over non-wild ditalgebras revisited; 29. Modules over non-wild algebras; 30. Absolute wildness; 31. Generic modules and tameness; 32. Almost split sequences and tameness; 33. Varieties of modules over ditalgebras; 34. Ditalgebras of partially ordered sets; 35. Further examples of wild ditalgebras; 36. Answers to selected exercises; References; Index.
Preface; 1. t-algebras and differentials; 2. Ditalgebras and modules; 3. Bocses, ditalgebras and modules; 4. Layered ditalgebras; 5. Triangular ditalgebras; 6. Exact structures in A-Mod; 7. Almost split conflations in A-Mod; 8. Quotient ditalgebras; 9. Frames and Roiter ditalgebras; 10. Product of ditalgebras; 11. Hom-tensor relations and dual basis; 12. Admissible modules; 13. Complete admissible modules; 14. Bimodule ltrations and triangular admissible modules; 15. Free bimodule ltrations and free ditalgebras; 16. AX is a Roiter ditalgebra, for suitable X; 17. Examples and applications; 18. The exact categories P(
), P1(
) and
-Mod; 19. Passage from ditalgebras to finite dimensional algebras; 20. Scalar extension and ditalgebras; 21. Bimodules; 22. Parametrizing bimodules and wildness; 23. Nested and seminested ditalgebras; 24. Critical ditalgebras; 25. Reduction functors; 26. Modules over non-wild ditalgebras; 27. Tameness and wildness; 28. Modules over non-wild ditalgebras revisited; 29. Modules over non-wild algebras; 30. Absolute wildness; 31. Generic modules and tameness; 32. Almost split sequences and tameness; 33. Varieties of modules over ditalgebras; 34. Ditalgebras of partially ordered sets; 35. Further examples of wild ditalgebras; 36. Answers to selected exercises; References; Index.
), P1(
) and
-Mod; 19. Passage from ditalgebras to finite dimensional algebras; 20. Scalar extension and ditalgebras; 21. Bimodules; 22. Parametrizing bimodules and wildness; 23. Nested and seminested ditalgebras; 24. Critical ditalgebras; 25. Reduction functors; 26. Modules over non-wild ditalgebras; 27. Tameness and wildness; 28. Modules over non-wild ditalgebras revisited; 29. Modules over non-wild algebras; 30. Absolute wildness; 31. Generic modules and tameness; 32. Almost split sequences and tameness; 33. Varieties of modules over ditalgebras; 34. Ditalgebras of partially ordered sets; 35. Further examples of wild ditalgebras; 36. Answers to selected exercises; References; Index.