This text links genetic algorithms (GAs) and the design of robust control systems. After laying a foundation in the basics of GAs and genetic programming, it demonstrates the power of these tools for developing optimal robust controllers for linear control systems, optimal disturbance rejection controllers, and predictive and variable structure control. It also explores the use of hybrid approaches that incorporate fuzzy logic into designs for intelligent control systems. The authors consider a variety of applications, such as robotic manipulators, flexible links, and jet engines, and illustrate a multi-objective GA approach using a case study.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.