Richard K. Ulrich, Leonard W. Schaper
Integrated Passive Component Technology
Herausgegeben:Ulrich, Richard K.; Schaper, Leonard W.
Richard K. Ulrich, Leonard W. Schaper
Integrated Passive Component Technology
Herausgegeben:Ulrich, Richard K.; Schaper, Leonard W.
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This is a thorough survey of the state-of-the-art in Integrated Passive Component Technology. _ Describes the processes available for creating integrated passives, measuring their properties, and applying them. _ Brings reader up to date in a fast-moving technology. _ Enables reader to implement the technology into a manufacturing environment. _ Covers existing and potential technologies for various substrate systems such as FR4, ceramic, and HDI. _ Describes applications favorable to integrated passives and the economic tradeoffs associated with their implementation.
Andere Kunden interessierten sich auch für
- Gabriel M. RebeizRF Mems230,99 €
- Wei ZhuVacuum Microelectronics216,99 €
- William D. BrownAdvanced Electronic Packaging227,99 €
- Simon M. Sze (Hrsg.)Modern Semiconductor Device Physics236,99 €
- Tom MouthaanSemiconductor Devices Explained181,99 €
- Simon HaykinLeast-Mean-Square Adaptive Filters224,99 €
- Vijay K. VaradanMicrostereolithography and Other Fabrication Techniques for 3D Mems304,99 €
-
-
-
This is a thorough survey of the state-of-the-art in Integrated Passive Component Technology.
_ Describes the processes available for creating integrated passives, measuring their properties, and applying them.
_ Brings reader up to date in a fast-moving technology.
_ Enables reader to implement the technology into a manufacturing environment.
_ Covers existing and potential technologies for various substrate systems such as FR4, ceramic, and HDI.
_ Describes applications favorable to integrated passives and the economic tradeoffs associated with their implementation.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
_ Describes the processes available for creating integrated passives, measuring their properties, and applying them.
_ Brings reader up to date in a fast-moving technology.
_ Enables reader to implement the technology into a manufacturing environment.
_ Covers existing and potential technologies for various substrate systems such as FR4, ceramic, and HDI.
_ Describes applications favorable to integrated passives and the economic tradeoffs associated with their implementation.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 379
- Erscheinungstermin: 30. Juni 2003
- Englisch
- Abmessung: 240mm x 161mm x 26mm
- Gewicht: 685g
- ISBN-13: 9780471244318
- ISBN-10: 0471244317
- Artikelnr.: 11429397
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 379
- Erscheinungstermin: 30. Juni 2003
- Englisch
- Abmessung: 240mm x 161mm x 26mm
- Gewicht: 685g
- ISBN-13: 9780471244318
- ISBN-10: 0471244317
- Artikelnr.: 11429397
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
RICHARD K. ULRICH, PhD, is a professor of Chemical Engineering at the University of Arkansas at Fayetteville. He is a NEMI committee member, a Visiting Associate Editor for IEEE Transactions on Advanced Packaging, and past chair of the Electrochemical Society's Dielectric Science and Technology Division. LEONARD W. SCHAPER, Jr., Dr Engr Sc, is a professor of Electrical Engineering at the University of Arkansas in Fayetteville. He is a Fellow of both the IEEE and the International Microelectronics and Packaging Society. He chairs the IEEE CPMT Technical Committee on Discrete and Integral Passives.
Contributors.
Preface.
1 Introduction (Richard K. Ulrich).
1.1 Status and Trends in Discrete Passive Components.
1.2 Definitions and Configurations of Integrated Passives.
1.3 Comparison to Integrated Active Devices.
1.4 Substrates and Interconnect Systems for Integrated Passives.
1.5 Fabrication of Integrated Passives.
1.6 Reasons for Integrating Passive Devices.
1.7 Problems with Integrating Passive Devices.
1.8 Applications for Integrated Passives.
1.9 The Past and Future of Integrated Passives.
1.10 Organization of this Book.
References.
2 Characteristics and Performance of Planar Resistors (Richard K. Ulrich).
2.1 Performance Parameters.
2.2 Resistance in Electronic Materials.
2.3 Sizing Integrated Resistors.
2.4 Trimming.
References.
3 Integrated Resistor Materials and Processes (Richard K. Ulrich).
3.1 Single-Component Metals.
3.2 Metal Alloys and Metal-Nonmetal Compounds.
3.3 Semiconductors.
3.4 Cermets.
3.5 Polymer Thick Film.
3.6 Ink Jet Deposition.
3.7 Commercialized Processes.
3.8 Summary.
References.
4 Dielectric Materials for Integrated Capacitors (Richard K. Ulrich).
4.1 Polarizability and Capacitance.
4.2 Capacitance Density.
4.3 Temperature Effects.
4.4 Frequency and Voltage Effects.
4.5 Aging Effects.
4.6 Composition and Morphology Effects.
4.7 Leakage and Breakdown.
4.8 Dissipation Factor.
4.9 Comparison to EIA Dielectric Classifications.
4.10 Matching Dielectric Materials to Applications.
References.
5 Size and Configuration of Integrated Capacitors (Richard K. Ulrich).
5.1 Comparison of Integrated and Discrete Areas.
5.2 Layout Options.
5.3 Tolerance.
5.4 Mixed Dielectric Strategies.
5.5 CV Product.
5.6 Maximum Capacitance Density and Breakdown Voltage.
References.
6 Processing Integrated Capacitors (Richard K. Ulrich).
6.1 Sputtering.
6.2 CVD, PECVD and MOCVD.
6.3 Anodization.
6.4 Sol-Gel and Hydrothermal Ferroelectrics.
6.5 Thin- and Thick-Film Polymers.
6.6 Thick-Film Dielectrics.
6.7 Interlayer Insulation.
6.8 Interdigitated Capacitors.
6.9 Capacitor Plate Materials.
6.10 Trimming Integrated Capacitors.
6.11 Commercialized Integrated Capacitor Technologies.
6.12 Summary.
References.
7 Defects and Yield Issues (Richard K. Ulrich).
7.1 Causes of Fatal Defects in Integrated Capacitors.
7.2 Measurement of Defect Density.
7.3 Defect Density and System Yield.
7.3.1 Predicting Yield from Defect Density.
7.4 Yield Enhancement Techniques for Capacitors.
7.5 Conclusions.
References.
8 Electrical Performance of Integrated Capacitors (Richard K. Ulrich and
Leonard W. Schaper).
8.1 Modeling Ideal Passives.
8.2 Modeling Real Capacitors.
8.3 Electrical Performance of Discrete and Integrated Capacitors.
8.4 Dissipation Factor of Real Capacitors.
8.5 Measurement of Capacitor Properties.
8.6 Summary.
References.
9 Decoupling (Leonard W. Schaper).
9.1 Power Distribution.
9.2 Decoupling with Discrete Capacitors.
9.3 Decoupling with Integrated Capacitors.
9.4 Dielectrics and Configurations for Integrated Decoupling.
9.5 Integrated Decoupling as an Entry Application.
References.
10 Integrated Inductors (Geert J. Carchon and Walter De Raedt).
10.1 Introduction.
10.2 Inductor Behavior and Performance Parameters.
10.3 Inductor Performance Prediction.
10.4 Integrated Inductor Examples.
10.5 Use of Inductors in Circuits: Examples.
10.6 Conclusions.
Acknowledgments.
References.
11 Modeling of Integrated Inductors and Resistors for Microwave
Applications (Zhenwen Wang, M. Jamal Deen, and A. H. Rahal).
11.1 Introduction.
11.2 Modeling of Spiral Inductors.
11.3 Modeling of Thin-Film Resistors.
11.4 Conclusions.
References.
Appendix: Characteristics of Microscript Lines.
12 Other Applications and Integration Technologies (Elizabeth Logan, Geert
J. Carchon, Walter De Raedt, Richard K. Ulrich, and Leonard W. Schaper).
12.1 Demonstration Devices Fabricated with Integrated Passives.
12.2 Commercialized Thin-Film Build-Up Integrated Passives.
12.3 Other Integrated Passive Technologies.
12.4 Summary.
Acknowledgments.
References.
13 The Economics of Embedded Passives (Peter A. Sandborn).
13.1 Introduction.
13.2 Modeling Embedded Passive Economics.
13.3 Key Aspects of Modeling Embedded Passive Costs.
13.4 Example Case Studies.
13.5 Summary.
Acknowledgments.
References.
14 The Future of Integrated Passives (Richard K. Ulrich).
14.1 Status of Passive Integration.
14.2 Issues for Implementation on Organic Substrates.
14.3 Progress on Board-Level Implementation.
14.4 Three Ways In for Organic Boards.
14.5 Conclusion.
Index.
About the Editors.
Preface.
1 Introduction (Richard K. Ulrich).
1.1 Status and Trends in Discrete Passive Components.
1.2 Definitions and Configurations of Integrated Passives.
1.3 Comparison to Integrated Active Devices.
1.4 Substrates and Interconnect Systems for Integrated Passives.
1.5 Fabrication of Integrated Passives.
1.6 Reasons for Integrating Passive Devices.
1.7 Problems with Integrating Passive Devices.
1.8 Applications for Integrated Passives.
1.9 The Past and Future of Integrated Passives.
1.10 Organization of this Book.
References.
2 Characteristics and Performance of Planar Resistors (Richard K. Ulrich).
2.1 Performance Parameters.
2.2 Resistance in Electronic Materials.
2.3 Sizing Integrated Resistors.
2.4 Trimming.
References.
3 Integrated Resistor Materials and Processes (Richard K. Ulrich).
3.1 Single-Component Metals.
3.2 Metal Alloys and Metal-Nonmetal Compounds.
3.3 Semiconductors.
3.4 Cermets.
3.5 Polymer Thick Film.
3.6 Ink Jet Deposition.
3.7 Commercialized Processes.
3.8 Summary.
References.
4 Dielectric Materials for Integrated Capacitors (Richard K. Ulrich).
4.1 Polarizability and Capacitance.
4.2 Capacitance Density.
4.3 Temperature Effects.
4.4 Frequency and Voltage Effects.
4.5 Aging Effects.
4.6 Composition and Morphology Effects.
4.7 Leakage and Breakdown.
4.8 Dissipation Factor.
4.9 Comparison to EIA Dielectric Classifications.
4.10 Matching Dielectric Materials to Applications.
References.
5 Size and Configuration of Integrated Capacitors (Richard K. Ulrich).
5.1 Comparison of Integrated and Discrete Areas.
5.2 Layout Options.
5.3 Tolerance.
5.4 Mixed Dielectric Strategies.
5.5 CV Product.
5.6 Maximum Capacitance Density and Breakdown Voltage.
References.
6 Processing Integrated Capacitors (Richard K. Ulrich).
6.1 Sputtering.
6.2 CVD, PECVD and MOCVD.
6.3 Anodization.
6.4 Sol-Gel and Hydrothermal Ferroelectrics.
6.5 Thin- and Thick-Film Polymers.
6.6 Thick-Film Dielectrics.
6.7 Interlayer Insulation.
6.8 Interdigitated Capacitors.
6.9 Capacitor Plate Materials.
6.10 Trimming Integrated Capacitors.
6.11 Commercialized Integrated Capacitor Technologies.
6.12 Summary.
References.
7 Defects and Yield Issues (Richard K. Ulrich).
7.1 Causes of Fatal Defects in Integrated Capacitors.
7.2 Measurement of Defect Density.
7.3 Defect Density and System Yield.
7.3.1 Predicting Yield from Defect Density.
7.4 Yield Enhancement Techniques for Capacitors.
7.5 Conclusions.
References.
8 Electrical Performance of Integrated Capacitors (Richard K. Ulrich and
Leonard W. Schaper).
8.1 Modeling Ideal Passives.
8.2 Modeling Real Capacitors.
8.3 Electrical Performance of Discrete and Integrated Capacitors.
8.4 Dissipation Factor of Real Capacitors.
8.5 Measurement of Capacitor Properties.
8.6 Summary.
References.
9 Decoupling (Leonard W. Schaper).
9.1 Power Distribution.
9.2 Decoupling with Discrete Capacitors.
9.3 Decoupling with Integrated Capacitors.
9.4 Dielectrics and Configurations for Integrated Decoupling.
9.5 Integrated Decoupling as an Entry Application.
References.
10 Integrated Inductors (Geert J. Carchon and Walter De Raedt).
10.1 Introduction.
10.2 Inductor Behavior and Performance Parameters.
10.3 Inductor Performance Prediction.
10.4 Integrated Inductor Examples.
10.5 Use of Inductors in Circuits: Examples.
10.6 Conclusions.
Acknowledgments.
References.
11 Modeling of Integrated Inductors and Resistors for Microwave
Applications (Zhenwen Wang, M. Jamal Deen, and A. H. Rahal).
11.1 Introduction.
11.2 Modeling of Spiral Inductors.
11.3 Modeling of Thin-Film Resistors.
11.4 Conclusions.
References.
Appendix: Characteristics of Microscript Lines.
12 Other Applications and Integration Technologies (Elizabeth Logan, Geert
J. Carchon, Walter De Raedt, Richard K. Ulrich, and Leonard W. Schaper).
12.1 Demonstration Devices Fabricated with Integrated Passives.
12.2 Commercialized Thin-Film Build-Up Integrated Passives.
12.3 Other Integrated Passive Technologies.
12.4 Summary.
Acknowledgments.
References.
13 The Economics of Embedded Passives (Peter A. Sandborn).
13.1 Introduction.
13.2 Modeling Embedded Passive Economics.
13.3 Key Aspects of Modeling Embedded Passive Costs.
13.4 Example Case Studies.
13.5 Summary.
Acknowledgments.
References.
14 The Future of Integrated Passives (Richard K. Ulrich).
14.1 Status of Passive Integration.
14.2 Issues for Implementation on Organic Substrates.
14.3 Progress on Board-Level Implementation.
14.4 Three Ways In for Organic Boards.
14.5 Conclusion.
Index.
About the Editors.
Contributors.
Preface.
1 Introduction (Richard K. Ulrich).
1.1 Status and Trends in Discrete Passive Components.
1.2 Definitions and Configurations of Integrated Passives.
1.3 Comparison to Integrated Active Devices.
1.4 Substrates and Interconnect Systems for Integrated Passives.
1.5 Fabrication of Integrated Passives.
1.6 Reasons for Integrating Passive Devices.
1.7 Problems with Integrating Passive Devices.
1.8 Applications for Integrated Passives.
1.9 The Past and Future of Integrated Passives.
1.10 Organization of this Book.
References.
2 Characteristics and Performance of Planar Resistors (Richard K. Ulrich).
2.1 Performance Parameters.
2.2 Resistance in Electronic Materials.
2.3 Sizing Integrated Resistors.
2.4 Trimming.
References.
3 Integrated Resistor Materials and Processes (Richard K. Ulrich).
3.1 Single-Component Metals.
3.2 Metal Alloys and Metal-Nonmetal Compounds.
3.3 Semiconductors.
3.4 Cermets.
3.5 Polymer Thick Film.
3.6 Ink Jet Deposition.
3.7 Commercialized Processes.
3.8 Summary.
References.
4 Dielectric Materials for Integrated Capacitors (Richard K. Ulrich).
4.1 Polarizability and Capacitance.
4.2 Capacitance Density.
4.3 Temperature Effects.
4.4 Frequency and Voltage Effects.
4.5 Aging Effects.
4.6 Composition and Morphology Effects.
4.7 Leakage and Breakdown.
4.8 Dissipation Factor.
4.9 Comparison to EIA Dielectric Classifications.
4.10 Matching Dielectric Materials to Applications.
References.
5 Size and Configuration of Integrated Capacitors (Richard K. Ulrich).
5.1 Comparison of Integrated and Discrete Areas.
5.2 Layout Options.
5.3 Tolerance.
5.4 Mixed Dielectric Strategies.
5.5 CV Product.
5.6 Maximum Capacitance Density and Breakdown Voltage.
References.
6 Processing Integrated Capacitors (Richard K. Ulrich).
6.1 Sputtering.
6.2 CVD, PECVD and MOCVD.
6.3 Anodization.
6.4 Sol-Gel and Hydrothermal Ferroelectrics.
6.5 Thin- and Thick-Film Polymers.
6.6 Thick-Film Dielectrics.
6.7 Interlayer Insulation.
6.8 Interdigitated Capacitors.
6.9 Capacitor Plate Materials.
6.10 Trimming Integrated Capacitors.
6.11 Commercialized Integrated Capacitor Technologies.
6.12 Summary.
References.
7 Defects and Yield Issues (Richard K. Ulrich).
7.1 Causes of Fatal Defects in Integrated Capacitors.
7.2 Measurement of Defect Density.
7.3 Defect Density and System Yield.
7.3.1 Predicting Yield from Defect Density.
7.4 Yield Enhancement Techniques for Capacitors.
7.5 Conclusions.
References.
8 Electrical Performance of Integrated Capacitors (Richard K. Ulrich and
Leonard W. Schaper).
8.1 Modeling Ideal Passives.
8.2 Modeling Real Capacitors.
8.3 Electrical Performance of Discrete and Integrated Capacitors.
8.4 Dissipation Factor of Real Capacitors.
8.5 Measurement of Capacitor Properties.
8.6 Summary.
References.
9 Decoupling (Leonard W. Schaper).
9.1 Power Distribution.
9.2 Decoupling with Discrete Capacitors.
9.3 Decoupling with Integrated Capacitors.
9.4 Dielectrics and Configurations for Integrated Decoupling.
9.5 Integrated Decoupling as an Entry Application.
References.
10 Integrated Inductors (Geert J. Carchon and Walter De Raedt).
10.1 Introduction.
10.2 Inductor Behavior and Performance Parameters.
10.3 Inductor Performance Prediction.
10.4 Integrated Inductor Examples.
10.5 Use of Inductors in Circuits: Examples.
10.6 Conclusions.
Acknowledgments.
References.
11 Modeling of Integrated Inductors and Resistors for Microwave
Applications (Zhenwen Wang, M. Jamal Deen, and A. H. Rahal).
11.1 Introduction.
11.2 Modeling of Spiral Inductors.
11.3 Modeling of Thin-Film Resistors.
11.4 Conclusions.
References.
Appendix: Characteristics of Microscript Lines.
12 Other Applications and Integration Technologies (Elizabeth Logan, Geert
J. Carchon, Walter De Raedt, Richard K. Ulrich, and Leonard W. Schaper).
12.1 Demonstration Devices Fabricated with Integrated Passives.
12.2 Commercialized Thin-Film Build-Up Integrated Passives.
12.3 Other Integrated Passive Technologies.
12.4 Summary.
Acknowledgments.
References.
13 The Economics of Embedded Passives (Peter A. Sandborn).
13.1 Introduction.
13.2 Modeling Embedded Passive Economics.
13.3 Key Aspects of Modeling Embedded Passive Costs.
13.4 Example Case Studies.
13.5 Summary.
Acknowledgments.
References.
14 The Future of Integrated Passives (Richard K. Ulrich).
14.1 Status of Passive Integration.
14.2 Issues for Implementation on Organic Substrates.
14.3 Progress on Board-Level Implementation.
14.4 Three Ways In for Organic Boards.
14.5 Conclusion.
Index.
About the Editors.
Preface.
1 Introduction (Richard K. Ulrich).
1.1 Status and Trends in Discrete Passive Components.
1.2 Definitions and Configurations of Integrated Passives.
1.3 Comparison to Integrated Active Devices.
1.4 Substrates and Interconnect Systems for Integrated Passives.
1.5 Fabrication of Integrated Passives.
1.6 Reasons for Integrating Passive Devices.
1.7 Problems with Integrating Passive Devices.
1.8 Applications for Integrated Passives.
1.9 The Past and Future of Integrated Passives.
1.10 Organization of this Book.
References.
2 Characteristics and Performance of Planar Resistors (Richard K. Ulrich).
2.1 Performance Parameters.
2.2 Resistance in Electronic Materials.
2.3 Sizing Integrated Resistors.
2.4 Trimming.
References.
3 Integrated Resistor Materials and Processes (Richard K. Ulrich).
3.1 Single-Component Metals.
3.2 Metal Alloys and Metal-Nonmetal Compounds.
3.3 Semiconductors.
3.4 Cermets.
3.5 Polymer Thick Film.
3.6 Ink Jet Deposition.
3.7 Commercialized Processes.
3.8 Summary.
References.
4 Dielectric Materials for Integrated Capacitors (Richard K. Ulrich).
4.1 Polarizability and Capacitance.
4.2 Capacitance Density.
4.3 Temperature Effects.
4.4 Frequency and Voltage Effects.
4.5 Aging Effects.
4.6 Composition and Morphology Effects.
4.7 Leakage and Breakdown.
4.8 Dissipation Factor.
4.9 Comparison to EIA Dielectric Classifications.
4.10 Matching Dielectric Materials to Applications.
References.
5 Size and Configuration of Integrated Capacitors (Richard K. Ulrich).
5.1 Comparison of Integrated and Discrete Areas.
5.2 Layout Options.
5.3 Tolerance.
5.4 Mixed Dielectric Strategies.
5.5 CV Product.
5.6 Maximum Capacitance Density and Breakdown Voltage.
References.
6 Processing Integrated Capacitors (Richard K. Ulrich).
6.1 Sputtering.
6.2 CVD, PECVD and MOCVD.
6.3 Anodization.
6.4 Sol-Gel and Hydrothermal Ferroelectrics.
6.5 Thin- and Thick-Film Polymers.
6.6 Thick-Film Dielectrics.
6.7 Interlayer Insulation.
6.8 Interdigitated Capacitors.
6.9 Capacitor Plate Materials.
6.10 Trimming Integrated Capacitors.
6.11 Commercialized Integrated Capacitor Technologies.
6.12 Summary.
References.
7 Defects and Yield Issues (Richard K. Ulrich).
7.1 Causes of Fatal Defects in Integrated Capacitors.
7.2 Measurement of Defect Density.
7.3 Defect Density and System Yield.
7.3.1 Predicting Yield from Defect Density.
7.4 Yield Enhancement Techniques for Capacitors.
7.5 Conclusions.
References.
8 Electrical Performance of Integrated Capacitors (Richard K. Ulrich and
Leonard W. Schaper).
8.1 Modeling Ideal Passives.
8.2 Modeling Real Capacitors.
8.3 Electrical Performance of Discrete and Integrated Capacitors.
8.4 Dissipation Factor of Real Capacitors.
8.5 Measurement of Capacitor Properties.
8.6 Summary.
References.
9 Decoupling (Leonard W. Schaper).
9.1 Power Distribution.
9.2 Decoupling with Discrete Capacitors.
9.3 Decoupling with Integrated Capacitors.
9.4 Dielectrics and Configurations for Integrated Decoupling.
9.5 Integrated Decoupling as an Entry Application.
References.
10 Integrated Inductors (Geert J. Carchon and Walter De Raedt).
10.1 Introduction.
10.2 Inductor Behavior and Performance Parameters.
10.3 Inductor Performance Prediction.
10.4 Integrated Inductor Examples.
10.5 Use of Inductors in Circuits: Examples.
10.6 Conclusions.
Acknowledgments.
References.
11 Modeling of Integrated Inductors and Resistors for Microwave
Applications (Zhenwen Wang, M. Jamal Deen, and A. H. Rahal).
11.1 Introduction.
11.2 Modeling of Spiral Inductors.
11.3 Modeling of Thin-Film Resistors.
11.4 Conclusions.
References.
Appendix: Characteristics of Microscript Lines.
12 Other Applications and Integration Technologies (Elizabeth Logan, Geert
J. Carchon, Walter De Raedt, Richard K. Ulrich, and Leonard W. Schaper).
12.1 Demonstration Devices Fabricated with Integrated Passives.
12.2 Commercialized Thin-Film Build-Up Integrated Passives.
12.3 Other Integrated Passive Technologies.
12.4 Summary.
Acknowledgments.
References.
13 The Economics of Embedded Passives (Peter A. Sandborn).
13.1 Introduction.
13.2 Modeling Embedded Passive Economics.
13.3 Key Aspects of Modeling Embedded Passive Costs.
13.4 Example Case Studies.
13.5 Summary.
Acknowledgments.
References.
14 The Future of Integrated Passives (Richard K. Ulrich).
14.1 Status of Passive Integration.
14.2 Issues for Implementation on Organic Substrates.
14.3 Progress on Board-Level Implementation.
14.4 Three Ways In for Organic Boards.
14.5 Conclusion.
Index.
About the Editors.
"...an interesting and useful book; I wholeheartedly recommend it."(Circuit World, Vol.30, No. 2003)
"...a comprehensive look at the reasons and current challenges...[of integrating] passive devices into board or IC...just the right dose of the math to explain the physics and theory behind the technology." (IEEE Circuits & Devices Magazine, Jan/Feb 2005)
"...an interesting and useful book; I wholeheartedly recommend it."(Circuit World, Vol.30, No. 2003)
"...an interesting and useful book; I wholeheartedly recommend it."(Circuit World, Vol.30, No. 2003)