En dimensión finita, las transformaciones o matrices diagonalizables representan un tema importante en Álgebra Lineal, donde aparecen involucrados conceptos clásicos como el de autovalor o espacios invariantes. Así como los autovalores de una matriz representan la clave en el estudio de la diagonalización, la teoría espectral proporciona una poderosa herramienta para el análisis y estudio de los operadores normales. En esta obra se presentan los operadores normales desde dos enfoques: en el primer enfoque se describen las propiedades algebraicas y características inherentes producto de la definición de operador normal, mientras que en el segundo enfoque se realiza un análisis del espectro y algunos subconjuntos espectrales importantes. Igualmente, se plasman algunos resultados originales que aportan mayor claridad de la estructura espectral de los operadores normales.
Bitte wählen Sie Ihr Anliegen aus.
Rechnungen
Retourenschein anfordern
Bestellstatus
Storno