26,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
  • Broschiertes Buch

Biodiesel is a hopeful alternative to petroleum-based diesel fuels. Its expanded use in unmodified engines has been very successful. After a brief synthesis on vegetable biofuels as alternatives for diesel engines, this paper present a study of a biofuel from the eucalyptus tree leaves. In this study, the investigations are performed for a direct injection diesel engine. The effects of neat eucalyptus biofuel and its different blends with diesel fuel are examined at different loads. Comparative measures of brake thermal efficiency, volumetric efficiency, brake specific fuel consumption,…mehr

Produktbeschreibung
Biodiesel is a hopeful alternative to petroleum-based diesel fuels. Its expanded use in unmodified engines has been very successful. After a brief synthesis on vegetable biofuels as alternatives for diesel engines, this paper present a study of a biofuel from the eucalyptus tree leaves. In this study, the investigations are performed for a direct injection diesel engine. The effects of neat eucalyptus biofuel and its different blends with diesel fuel are examined at different loads. Comparative measures of brake thermal efficiency, volumetric efficiency, brake specific fuel consumption, exhaust gas temperature and pollutant species are presented and discussed. The impacts of neat eucalyptus biofuel are examined at twice loads. A numerical investigation under three dimensional Reynolds-averaged navier stokes approach have been carried out for more investigations using CONVERGE CFD software. Results show that when the engine is supplied with neat eucalyptus fuel, the combustion characteristics are slightly changed compared to neat diesel fuel and the soot species are reduced. The numerical investigations have also permit to analyse the impact of injection timing on the soot.
Autorenporträt
Hamza Bousbaa is an Assistant Professor at the National Polytechnic School of Oran-Algeria. He obtained his PhD in Mechanical Engineering in 2013. He is a Researcher at LTE Laboratory since 2006. His research activities focus on internal combustion engine performances and emissions. He has published several papers in this field.