32,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
16 °P sammeln
  • Broschiertes Buch

Regular fluid (water, ethylene glycol, propylene glycol and oils) is a poor heat carrier due to low thermal conductivity. However, when nanometer-sized particles (1 to 100 nm) are suspended in regular fluid, called nanofluid, its thermal conductivity is sufficiently enhanced and as a results heat transfer rate increased. Nanofluids depend on size as well as volume fraction of nanoparticles in the base fluid, and have useful industrial applications. Based on such a motivation, this thesis aims to study heat transfer enhancement and magnetohydrodynamic flow in water-based Brinkman-type nanofluid…mehr

Produktbeschreibung
Regular fluid (water, ethylene glycol, propylene glycol and oils) is a poor heat carrier due to low thermal conductivity. However, when nanometer-sized particles (1 to 100 nm) are suspended in regular fluid, called nanofluid, its thermal conductivity is sufficiently enhanced and as a results heat transfer rate increased. Nanofluids depend on size as well as volume fraction of nanoparticles in the base fluid, and have useful industrial applications. Based on such a motivation, this thesis aims to study heat transfer enhancement and magnetohydrodynamic flow in water-based Brinkman-type nanofluid with thermal radiation. First part of this work focuses on magnetohydrodynamic flow of water-based Brinkman-type nanofluid over a vertical plate with porosity, variable surface velocity, temperature and concentration. . Rate of heat transfer increased with increasing nanoparticle volume fraction and decreased with increasing thermal radiation. Skin-friction coefficient decreased with increasing nanoparticle volume fraction and increased with increasing Brinkman parameter.
Autorenporträt
Miss Madeha Gohar received her MS degree in 2017, she is lecturer at City University of Science and IT. ¿ Dr. Farhad Ali is Head of Mathematics Department CUSIT and is author of more than 60 research papers. ¿ Mr. Nadeem Ahmad Sheikh received his MS degree in 2017 and he is lecturer at City University of Science and IT.