111,99 €
111,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
111,99 €
111,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
111,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
111,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: ePub

Faster, cheaper and environmentally friendly, these are the criteria for designing new reactions and this is the challenge faced by many chemical engineers today.
Based on courses thaught by the authors, this advanced textbook discusses opportunities for carrying out reactions on an industrial level in a technically controllable, sustainable, costeffective and safe manner.
Adopting a practical approach, it describes how miniaturized devices (mixers, reactors, heat exchangers, and separators) are used successfully for process intensification, focusing on the engineering aspects of
…mehr

  • Geräte: eReader
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 19.44MB
Produktbeschreibung
Faster, cheaper and environmentally friendly, these are the criteria for designing new reactions and this is the challenge faced by many chemical engineers today.

Based on courses thaught by the authors, this advanced textbook discusses opportunities for carrying out reactions on an industrial level in a technically controllable, sustainable, costeffective and safe manner.

Adopting a practical approach, it describes how miniaturized devices (mixers, reactors, heat exchangers, and separators) are used successfully for process intensification, focusing on the engineering aspects of microstrctured devices, such as their design and main chracteristics for homogeneous and multiphase reactions. It adresses the conditions under which microstructured devices are beneficial, how they should be designed, and how such devices can be integrated in an existing chemical process. Case studies show how the knowledge gained can be applied for particular processes.

The textbook is essential for master and doctoral students, as well as for professional chemists and chemical engineers working in this area.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in D ausgeliefert werden.

Autorenporträt
Dr. Madhvanand Kashid, Chemical Engineer, at Syngenta Crop Protection Monthey SA, Switzerland. He secured PhD in Chemical Engineering from Technical University of Dortmund, Germany, on "liguid-liquid slug flow capillary microreactors". Prior to joining Syngenta, he worked at Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland. He had been extensively working on different aspects of microprocess engineering such as design and characterization of microstructured devices both by mathematical modelling and experimental validation, development of continuous process with industrial partners, and application of microdevices for educational purpose. He is the co-author of 25 scientific publications, reviews and book chapters. Prof. Dr. Albert Renken, Professor Emeritus, secured PhD and habilitation from University of Hannover and joined EPFL in 1977. He has been working on variety of topics related to chemical and polymer reaction engineering such as multiphase reactions, heterogeneous and enzymatic catalysis and micro reactor technology. He represents Switzerland in the Working Party on Chemical Reaction Engineering in the European Federation of Chemical Engineering. In 2007 he got the DECHEMA-Titan-Medal for his pioneering contributions to Chemical Reaction Engineering and Microreaction Technology. He is author or co-author of more than 450 scientific publications, 3 textbooks and co-author of the "Handbook of Micro Process Engineering". His actual research and teaching is focused on sustainable chemical production and process intensification. Prof. Dr. Lioubov Kiwi-Minsker, Head of the Group of Catalytic Reaction Engineering, GGRC, at Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland . Prof. Kiwi-Minsker received her PhD in 1982 in physical & colloidal chemistry from Moscow University, her habilitation in 1992 from the Novosibirsk University in Physical Chemistry and joined EPFL in 1994. Her teaching and research activities continue to be in the field of Heterogeneous Catalysis and Reactor technology, in particular, the reactors with structured catalytic beds and micro-reactors. She is the co-author of more than 200 scientific publications, patents and book chapters. She is currently a member of the Working party on "Chemical Reaction Engineering" and "Process Intensification" of the European Federation of Chemical Engineering (EFCE) and of the European Federation of Catalysis (EFCATS).