The book provides an introduction of very recent results about the tensors and mainly focuses on the authors' work and perspective. A systematic description about how to extend the numerical linear algebra to the numerical multi-linear algebra is also delivered in this book. The authors design the neural network model for the computation of the rank-one approximation of real tensors, a normalization algorithm to convert some nonnegative tensors to plane stochastic tensors and a probabilistic algorithm for locating a positive diagonal in a nonnegative tensors, adaptive randomized algorithms for computing the approximate tensor decompositions, and the QR type method for computing U-eigenpairs of complex tensors.
This book could be used for the Graduate course, such as Introduction to Tensor. Researchers may also find it helpful as a reference in tensor research.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497