Tomasz R. Bielecki (Illinois Institute of Technology), Jacek Jakubowski (Poland Uniwersytet Warszawski), Mariusz Nieweglowski
Structured Dependence between Stochastic Processes
Tomasz R. Bielecki (Illinois Institute of Technology), Jacek Jakubowski (Poland Uniwersytet Warszawski), Mariusz Nieweglowski
Structured Dependence between Stochastic Processes
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The theory of structured dependence has many real-life applications in areas such as finance, insurance, seismology, neuroscience, and genetics. The first book to be devoted to this research area, this is a useful tool for researchers and practitioners in the field, as well as graduate students.
Andere Kunden interessierten sich auch für
- David Applebaum (University of Sheffield)Levy Processes and Stochastic Calculus97,99 €
- Dirk P. Kroese (Australia University of Queensland)An Advanced Course in Probability and Stochastic Processes122,99 €
- Pierre Devolder (Universite Catholique de Louvain)Basic Stochastic Processes104,99 €
- Richard F. Bass (University of Connecticut)Stochastic Processes79,99 €
- Don S. Lemons (Bethel College)An Introduction to Stochastic Processes in Physics40,99 €
- Olga Korosteleva (California State University, Long Beach, USA)Stochastic Processes with R84,99 €
- Linda J. S. Allen (Texas Tech University, Lubbock, Texas, USA)An Introduction to Stochastic Processes with Applications to Biology148,99 €
-
-
-
The theory of structured dependence has many real-life applications in areas such as finance, insurance, seismology, neuroscience, and genetics. The first book to be devoted to this research area, this is a useful tool for researchers and practitioners in the field, as well as graduate students.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Encyclopedia of Mathematics and its Applications
- Verlag: Cambridge University Press
- Seitenzahl: 278
- Erscheinungstermin: 27. August 2020
- Englisch
- Abmessung: 234mm x 156mm x 19mm
- Gewicht: 600g
- ISBN-13: 9781107154254
- ISBN-10: 1107154251
- Artikelnr.: 58503449
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Encyclopedia of Mathematics and its Applications
- Verlag: Cambridge University Press
- Seitenzahl: 278
- Erscheinungstermin: 27. August 2020
- Englisch
- Abmessung: 234mm x 156mm x 19mm
- Gewicht: 600g
- ISBN-13: 9781107154254
- ISBN-10: 1107154251
- Artikelnr.: 58503449
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Tomasz R. Bielecki is Professor of Applied Mathematics at the Illinois Institute of Technology, Chicago. He co-authored Credit Risk: Modelling, Valuation and Hedging (2002), Credit Risk Modelling (2010) and Counterparty Risk and Funding (2014), and he currently serves as an associate editor of several journals, including Stochastics: An International Journal of Probability and Stochastic Processes.
1. Introduction
Part I. Consistencies: 2. Strong Markov consistency of multivariate Markov families and processes
3. Consistency of finite multivariate Markov chains
4. Consistency of finite multivariate conditional Markov chains
5. Consistency of multivariate special semimartingales
Part II. Structures: 6. Strong Markov family structures
7. Markov chain structures
8. Conditional Markov chain structures
9. Special semimartingale structures Part III. Further Developments: 10. Archimedean survival processes, Markov consistency, ASP structures
11. Generalized multivariate Hawkes processes
Part IV. Applications of Stochastic Structures: 12. Applications of stochastic structures
Appendix A. Stochastic analysis: selected concepts and results used in this book
Appendix B. Markov processes and Markov families
Appendix C. Finite Markov chains: auxiliary technical framework
Appendix D. Crash course on conditional Markov chains and on doubly stochastic Markov chains
Appendix E. Evolution systems and semigroups of linear operators
Appendix F. Martingale problem: some new results needed in this book
Appendix G. Function spaces and pseudo-differential operators
References
Notation index
Subject index.
Part I. Consistencies: 2. Strong Markov consistency of multivariate Markov families and processes
3. Consistency of finite multivariate Markov chains
4. Consistency of finite multivariate conditional Markov chains
5. Consistency of multivariate special semimartingales
Part II. Structures: 6. Strong Markov family structures
7. Markov chain structures
8. Conditional Markov chain structures
9. Special semimartingale structures Part III. Further Developments: 10. Archimedean survival processes, Markov consistency, ASP structures
11. Generalized multivariate Hawkes processes
Part IV. Applications of Stochastic Structures: 12. Applications of stochastic structures
Appendix A. Stochastic analysis: selected concepts and results used in this book
Appendix B. Markov processes and Markov families
Appendix C. Finite Markov chains: auxiliary technical framework
Appendix D. Crash course on conditional Markov chains and on doubly stochastic Markov chains
Appendix E. Evolution systems and semigroups of linear operators
Appendix F. Martingale problem: some new results needed in this book
Appendix G. Function spaces and pseudo-differential operators
References
Notation index
Subject index.
1. Introduction
Part I. Consistencies: 2. Strong Markov consistency of multivariate Markov families and processes
3. Consistency of finite multivariate Markov chains
4. Consistency of finite multivariate conditional Markov chains
5. Consistency of multivariate special semimartingales
Part II. Structures: 6. Strong Markov family structures
7. Markov chain structures
8. Conditional Markov chain structures
9. Special semimartingale structures Part III. Further Developments: 10. Archimedean survival processes, Markov consistency, ASP structures
11. Generalized multivariate Hawkes processes
Part IV. Applications of Stochastic Structures: 12. Applications of stochastic structures
Appendix A. Stochastic analysis: selected concepts and results used in this book
Appendix B. Markov processes and Markov families
Appendix C. Finite Markov chains: auxiliary technical framework
Appendix D. Crash course on conditional Markov chains and on doubly stochastic Markov chains
Appendix E. Evolution systems and semigroups of linear operators
Appendix F. Martingale problem: some new results needed in this book
Appendix G. Function spaces and pseudo-differential operators
References
Notation index
Subject index.
Part I. Consistencies: 2. Strong Markov consistency of multivariate Markov families and processes
3. Consistency of finite multivariate Markov chains
4. Consistency of finite multivariate conditional Markov chains
5. Consistency of multivariate special semimartingales
Part II. Structures: 6. Strong Markov family structures
7. Markov chain structures
8. Conditional Markov chain structures
9. Special semimartingale structures Part III. Further Developments: 10. Archimedean survival processes, Markov consistency, ASP structures
11. Generalized multivariate Hawkes processes
Part IV. Applications of Stochastic Structures: 12. Applications of stochastic structures
Appendix A. Stochastic analysis: selected concepts and results used in this book
Appendix B. Markov processes and Markov families
Appendix C. Finite Markov chains: auxiliary technical framework
Appendix D. Crash course on conditional Markov chains and on doubly stochastic Markov chains
Appendix E. Evolution systems and semigroups of linear operators
Appendix F. Martingale problem: some new results needed in this book
Appendix G. Function spaces and pseudo-differential operators
References
Notation index
Subject index.