One of the more recently proposed flip-flop designs has been the sense amplifier flip-flop. It has gained acceptance in the commercial realm because of its power consumption, speed, setup time, clock line loading, and data line loading characteristics. In this thesis, a recently designed RADHARD version of D sense amplifier flipflop was taken and a triple mode redundant version for space and radiation environment use was created. The design was created with valuable options to increase radiation hardness and to give end users greater flexibility in realizing their own radiation hardened version of flip-flop. In addition, a methodology for using a traditional circuit simulation tool, SPICE, was developed to test the operation of the flip-flop design for both normal conditions and under the influence of radiation.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.