38,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
19 °P sammeln
  • Broschiertes Buch

This work explores the dynamics of a three-dimensional four-bar mechanical linkage subject to random external forcing. The Lagrangian formulation of the equations of motion are index-3 stochastic differential-algebraic equations (SDAE) that describe the time evolution of the sample paths of the generalized coordinates, velocities, and Lagrange multipliers as stochastic processes. We numerically solve the SDAEs using two different approaches: inverse dynamics, Case Study 1, via independent, successive solution of the nonlinear equations for each kinematic variable, where the time evolution of…mehr

Produktbeschreibung
This work explores the dynamics of a three-dimensional four-bar mechanical linkage subject to random external forcing. The Lagrangian formulation of the equations of motion are index-3 stochastic differential-algebraic equations (SDAE) that describe the time evolution of the sample paths of the generalized coordinates, velocities, and Lagrange multipliers as stochastic processes. We numerically solve the SDAEs using two different approaches: inverse dynamics, Case Study 1, via independent, successive solution of the nonlinear equations for each kinematic variable, where the time evolution of one generalized coordinate is prescribed; and direct dynamics, Case Study 2, via direct solution of the SDAEs in the index-1 formulation, using fourth-order stochastic backward differentiation formula (BDF) with modified Newton iteration and position and velocity stabilization, where the (deterministic) input driving torque is prescribed.
Autorenporträt
The author is a mechanical engineer with over 13 years of professional engineering experience. He has an M.S.M.E. and M.S. Applied Mathematics, specializing in solid mechanics and stochastic dynamics of rigid body systems.