Prediction of a random field based on observations of the random field at some set of locations arises in mining, hydrology, atmospheric sciences, and geography. Kriging, a prediction scheme defined as any prediction scheme that minimizes mean squared prediction error among some class of predictors under a particular model for the field, is commonly used in all these areas of prediction. This book summarizes past work and describes new approaches to thinking about kriging.
Prediction of a random field based on observations of the random field at some set of locations arises in mining, hydrology, atmospheric sciences, and geography. Kriging, a prediction scheme defined as any prediction scheme that minimizes mean squared prediction error among some class of predictors under a particular model for the field, is commonly used in all these areas of prediction. This book summarizes past work and describes new approaches to thinking about kriging.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
1 Linear Prediction.- 1.1 Introduction.- 1.2 Best linear prediction.- 1.3 Hilbert spaces and prediction.- 1.4 An example of a poor BLP.- 1.5 Best linear unbiased prediction.- 1.6 Some recurring themes.- 1.7 Summary of practical suggestions.- 2 Properties of Random Fields.- 2.1 Preliminaries.- 2.2 The turning bands method.- 2.3 Elementary properties of autocovariance functions.- 2.4 Mean square continuity and differentiability.- 2.5 Spectral methods.- 2.6 Two corresponding Hilbert spaces.- 2.7 Examples of spectral densities on 112.- 2.8 Abelian and Tauberian theorems.- 2.9 Random fields with nonintegrable spectral densities.- 2.10 Isotropic autocovariance functions.- 2.11 Tensor product autocovariances.- 3 Asymptotic Properties of Linear Predictors.- 3.1 Introduction.- 3.2 Finite sample results.- 3.3 The role of asymptotics.- 3.4 Behavior of prediction errors in the frequency domain.- 3.5 Prediction with the wrong spectral density.- 3.6 Theoretical comparison of extrapolation and ointerpolation.- 3.7 Measurement errors.- 3.8 Observations on an infinite lattice.- 4 Equivalence of Gaussian Measures and Prediction.- 4.1 Introduction.- 4.2 Equivalence and orthogonality of Gaussian measures.- 4.3 Applications of equivalence of Gaussian measures to linear prediction.- 4.4 Jeffreys's law.- 5 Integration of Random Fields.- 5.1 Introduction.- 5.2 Asymptotic properties of simple average.- 5.3 Observations on an infinite lattice.- 5.4 Improving on the sample mean.- 5.5 Numerical results.- 6 Predicting With Estimated Parameters.- 6.1 Introduction.- 6.2 Microergodicity and equivalence and orthogonality of Gaussian measures.- 6.3 Is statistical inference for differentiable processes possible?.- 6.4 Likelihood Methods.- 6.5 Matérn model.- 6.6 A numerical study of the Fisherinformation matrix under the Matérn model.- 6.7 Maximum likelihood estimation for a periodic version of the Matérn model.- 6.8 Predicting with estimated parameters.- 6.9 An instructive example of plug-in prediction.- 6.10 Bayesian approach.- A Multivariate Normal Distributions.- B Symbols.- References.
1 Linear Prediction.- 1.1 Introduction.- 1.2 Best linear prediction.- 1.3 Hilbert spaces and prediction.- 1.4 An example of a poor BLP.- 1.5 Best linear unbiased prediction.- 1.6 Some recurring themes.- 1.7 Summary of practical suggestions.- 2 Properties of Random Fields.- 2.1 Preliminaries.- 2.2 The turning bands method.- 2.3 Elementary properties of autocovariance functions.- 2.4 Mean square continuity and differentiability.- 2.5 Spectral methods.- 2.6 Two corresponding Hilbert spaces.- 2.7 Examples of spectral densities on 112.- 2.8 Abelian and Tauberian theorems.- 2.9 Random fields with nonintegrable spectral densities.- 2.10 Isotropic autocovariance functions.- 2.11 Tensor product autocovariances.- 3 Asymptotic Properties of Linear Predictors.- 3.1 Introduction.- 3.2 Finite sample results.- 3.3 The role of asymptotics.- 3.4 Behavior of prediction errors in the frequency domain.- 3.5 Prediction with the wrong spectral density.- 3.6 Theoretical comparison of extrapolation and ointerpolation.- 3.7 Measurement errors.- 3.8 Observations on an infinite lattice.- 4 Equivalence of Gaussian Measures and Prediction.- 4.1 Introduction.- 4.2 Equivalence and orthogonality of Gaussian measures.- 4.3 Applications of equivalence of Gaussian measures to linear prediction.- 4.4 Jeffreys's law.- 5 Integration of Random Fields.- 5.1 Introduction.- 5.2 Asymptotic properties of simple average.- 5.3 Observations on an infinite lattice.- 5.4 Improving on the sample mean.- 5.5 Numerical results.- 6 Predicting With Estimated Parameters.- 6.1 Introduction.- 6.2 Microergodicity and equivalence and orthogonality of Gaussian measures.- 6.3 Is statistical inference for differentiable processes possible?.- 6.4 Likelihood Methods.- 6.5 Matérn model.- 6.6 A numerical study of the Fisherinformation matrix under the Matérn model.- 6.7 Maximum likelihood estimation for a periodic version of the Matérn model.- 6.8 Predicting with estimated parameters.- 6.9 An instructive example of plug-in prediction.- 6.10 Bayesian approach.- A Multivariate Normal Distributions.- B Symbols.- References.
Rezensionen
From a review:
GEODERMA
"the book is written with great care and dedication. Soil geostatisticians that are not easily scared off by mathematics will find this book to be a rich source of inspiration for many years to come."
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826