A readable exposition of how Euclidean and other geometries can be distinguished using linear algebra and transformation groups.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Norman W. Johnson was Professor Emeritus of Mathematics at Wheaton College, Massachusetts. Johnson authored and co-authored numerous journal articles on geometry and algebra, and his 1966 paper 'Convex Polyhedra with Regular Faces' enumerated what have come to be called the Johnson solids. He was a frequent participant in international conferences and a member of the American Mathematical Society and the Mathematical Association of America.
Inhaltsangabe
Introduction 1. Homogenous spaces 2. Linear geometries 3. Circular geometries 4. Real collineation groups 5. Equiareal collineations 6. Real isometry groups 7. Complex spaces 8. Complex collineation groups 9. Circularities and concatenations 10. Unitary isometry groups 11. Finite symmetry groups 12. Euclidean symmetry groups 13. Hyperbolic coxeter groups 14. Modular transformations 15. Quaternionic modular groups.
Introduction 1. Homogenous spaces 2. Linear geometries 3. Circular geometries 4. Real collineation groups 5. Equiareal collineations 6. Real isometry groups 7. Complex spaces 8. Complex collineation groups 9. Circularities and concatenations 10. Unitary isometry groups 11. Finite symmetry groups 12. Euclidean symmetry groups 13. Hyperbolic coxeter groups 14. Modular transformations 15. Quaternionic modular groups.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826