36,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
18 °P sammeln
  • Broschiertes Buch

The Artificial Neural Network (ANN) model has been known as one of the most effective theories for automatic ship berthing, as it has learning ability and mimics the actions of the human brain when performing the stages of ship berthing. However, existing ANN controllers can only bring a ship into a berth in a certain port, where the inputs of the ANN are the same as those of the teaching data. This means that those ANN controllers must be retrained when the ship arrives to a new port, which is time-consuming and costly. In this research, by using the head-up coordinate system, which includes…mehr

Produktbeschreibung
The Artificial Neural Network (ANN) model has been known as one of the most effective theories for automatic ship berthing, as it has learning ability and mimics the actions of the human brain when performing the stages of ship berthing. However, existing ANN controllers can only bring a ship into a berth in a certain port, where the inputs of the ANN are the same as those of the teaching data. This means that those ANN controllers must be retrained when the ship arrives to a new port, which is time-consuming and costly. In this research, by using the head-up coordinate system, which includes the relative bearing and distance from the ship to the berth, a novel ANN controller is proposed to automatically control the ship into the berth in different ports without retraining the ANN structure. Numerical simulations were performed to verify the effectiveness of the proposed controller.
Autorenporträt
Van-Suong Nguyen received his M.Sc. in Navigation Science in 2012 from Vietnam Maritime University and his Ph.D. in Maritime Safety System in 2016 from Mokpo National Maritime University, Korea. Since 2010, he has worked as lecturer in Vietnam Maritime University.