This book presents the theory of hyperbolic conservation laws from basic theory to the forefront of research.
The text treats the theory of scalar conservation laws in one dimension in detail, showing the stability of the Cauchy problem using front tracking. The extension to multidimensional scalar conservation laws is obtained using dimensional splitting. The book includes detailed discussion of the recent proof of well-posedness of the Cauchy problem for one-dimensional hyperbolic conservation laws, and a chapter on traditional finite difference methods for hyperbolic conservation laws with error estimates and a section on measure valued solutions.
The text treats the theory of scalar conservation laws in one dimension in detail, showing the stability of the Cauchy problem using front tracking. The extension to multidimensional scalar conservation laws is obtained using dimensional splitting. The book includes detailed discussion of the recent proof of well-posedness of the Cauchy problem for one-dimensional hyperbolic conservation laws, and a chapter on traditional finite difference methods for hyperbolic conservation laws with error estimates and a section on measure valued solutions.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"This is the 2nd edition of the famous book ... devoted to the modern theory of hyperbolic conservation laws. ... The book is well written, well illustrated (it contains even cartoons) and may be recommended not only to experienced specialists in conservation laws but also to students specialized in this field." (Evgeniy Panov, zbMATH 1346.35004, 2016)
From the reviews:
"The book under review provides a self-contained, thorough, and modern account of the mathematical theory of hyperbolic conservation laws. ... gives a detailed treatment of the existence, uniqueness, and stability of solutions to a single conservation law in several space dimensions and to systems in one dimension. This book ... is a timely contribution since it summarizes recent and efficient solutions to the question of well-posedness. This book would serve as an excellent reference for a graduate course on nonlinear conservation laws ... ." (M. Laforest, Computer Physics Communications, Vol. 155, 2003)
"The present book is an excellent compromise between theory and practice. Since it contains a lot of theorems, with full proofs, it is a true piece of mathematical analysis. On the other hand, it displays a lot of details and information about numerical approximation for the Cauchy problem. Thus it will be of interest for a wide audience. Students will appreciate the lively and accurate style ... . this text is suitable for graduate courses in PDEs and numerical analysis." (Denis Serre, Mathematical Reviews, 2003 e)
"The book under review provides a self-contained, thorough, and modern account of the mathematical theory of hyperbolic conservation laws. ... gives a detailed treatment of the existence, uniqueness, and stability of solutions to a single conservation law in several space dimensions and to systems in one dimension. This book ... is a timely contribution since it summarizes recent and efficient solutions to the question of well-posedness. This book would serve as an excellent reference for a graduate course on nonlinear conservation laws ... ." (M. Laforest, Computer Physics Communications, Vol. 155, 2003)
"The present book is an excellent compromise between theory and practice. Since it contains a lot of theorems, with full proofs, it is a true piece of mathematical analysis. On the other hand, it displays a lot of details and information about numerical approximation for the Cauchy problem. Thus it will be of interest for a wide audience. Students will appreciate the lively and accurate style ... . this text is suitable for graduate courses in PDEs and numerical analysis." (Denis Serre, Mathematical Reviews, 2003 e)