20,95 €
inkl. MwSt.
Sofort per Download lieferbar
  • Format: ePub

In the age of information, strategic management of data is critical to organizational success. The constant challenge lies in maintaining data accuracy and preventing data pipelines from breaking. Data Observability for Data Engineering is your definitive guide to implementing data observability successfully in your organization. This book unveils the power of data observability, a fusion of techniques and methods that allow you to monitor and validate the health of your data. You’ll see how it builds on data quality monitoring and understand its significance from the data engineering…mehr

Produktbeschreibung
In the age of information, strategic management of data is critical to organizational success. The constant challenge lies in maintaining data accuracy and preventing data pipelines from breaking. Data Observability for Data Engineering is your definitive guide to implementing data observability successfully in your organization.
This book unveils the power of data observability, a fusion of techniques and methods that allow you to monitor and validate the health of your data. You’ll see how it builds on data quality monitoring and understand its significance from the data engineering perspective. Once you're familiar with the techniques and elements of data observability, you'll get hands-on with a practical Python project to reinforce what you've learned. Toward the end of the book, you’ll apply your expertise to explore diverse use cases and experiment with projects to seamlessly implement data observability in your organization.
Equipped with the mastery of data observability intricacies, you’ll be able to make your organization future-ready and resilient and never worry about the quality of your data pipelines again.

Autorenporträt
Michele Pinto is the Head of Engineering at Kensu. With over 15 years of experience, Michele has a great knack for understanding how data observability and data engineering are closely linked. He started his career as a software engineer and has worked since then in various roles, such as big data engineer, big data architect, head of data and until recently he was a Head of Engineering. He has a great community presence and believes in giving back to the community. He has also been a teacher for Digital Product Management Master TAG Innovation School in Milan, Italy. His collaboration on the book has been prompt, swift, eager, and very invested.