32,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
16 °P sammeln
  • Broschiertes Buch

Flash memory is hugely been using for small handheld to large enterprise applications due to its attractive features. However, flash hardware characteristics like erase-before-write and limited- erase-cycles are becoming big hurdle for researchers to provide reliable and performance oriented system softwares. The effective way to mitigate the impacts of flash drawbacks is to manage the data by its access patterns. But, as a side affect, such approach imposes the demand of high main memory space and lengthy time for initialization. This book provides the work toward reliable data management for…mehr

Produktbeschreibung
Flash memory is hugely been using for small handheld to large enterprise applications due to its attractive features. However, flash hardware characteristics like erase-before-write and limited- erase-cycles are becoming big hurdle for researchers to provide reliable and performance oriented system softwares. The effective way to mitigate the impacts of flash drawbacks is to manage the data by its access patterns. But, as a side affect, such approach imposes the demand of high main memory space and lengthy time for initialization. This book provides the work toward reliable data management for NAND flash memory based storage systems. Empirical framework classifies data intellectually according to their access frequencies and proves the efficiency and effectiveness for data and memory management on all levels of system operations. Meticulous analytical discussions and comprehensive experimental results demonstrate the highly improved system performance achieved by considering the diverse natures of data.
Autorenporträt
Sanam Shahla Rizvi, PhD in Information and Communication, Ajou University, South Korea.