49,00 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

Ein wichtiges Einsatzgebiet künstlicher neuronaler Netze (KNN) ist die Erkennung von Mustern. Das Hintergrundwissen des Menschen über die Zusammenhänge einer zu untersuchenden Domäne kann als ein Muster von Merkmalen gesehen werden. Auch die natürliche Sprache unterliegt typischen Regelmäßigkeiten. Da die Erkennung von Mustern ein wichtiges Einsatzgebiet künstlicher neuronaler Netze ist, stellt sich daher die Frage, inwieweit künstliche neuronale Netze eingesetzt werden können, um Sprachmuster innerhalb von Textmustern zu erkennen. Das World Wide Web bietet eine fast unerschöpfliche Quelle an…mehr

Produktbeschreibung
Ein wichtiges Einsatzgebiet künstlicher neuronaler Netze (KNN) ist die Erkennung von Mustern. Das Hintergrundwissen des Menschen über die Zusammenhänge einer zu untersuchenden Domäne kann als ein Muster von Merkmalen gesehen werden. Auch die natürliche Sprache unterliegt typischen Regelmäßigkeiten. Da die Erkennung von Mustern ein wichtiges Einsatzgebiet künstlicher neuronaler Netze ist, stellt sich daher die Frage, inwieweit künstliche neuronale Netze eingesetzt werden können, um Sprachmuster innerhalb von Textmustern zu erkennen. Das World Wide Web bietet eine fast unerschöpfliche Quelle an Informationsangeboten. Eine gezielte Suche sowie eine Filterung und Klassifikation von bestimmten Informationen in dem weitgehend unstrukturierten und dynamischen Informationsraum des World Wide Webs ist mit Schwierigkeiten verbunden. Auch das Erstellen einzelner Regeln zur maschinellen Erkennung von Eigennamen gestaltet sich sehr aufwendig. Daher soll in dieser Arbeit ein Ansatz aufgezeigt und bewertet werden, mit dem Regeln zur Eigennamenerkennung erlernt werden können.
Autorenporträt
Semjon Müller, Dipl.-Wirt.-Inf.: Studium der Wirtschaftsinformatik an der Universität Trier. Entwickler bei Schroder Investment Management, Luxembourg.