One-dimensional Nanostructures for PEM Fuel Cell Applications provides a review of the progress made in 1D catalysts for applications in polymer electrolyte fuel cells. It highlights the improved understanding of catalytic mechanisms on 1D nanostructures and the new approaches developed for practical applications, also including a critical perspective on current research limits. The book serves as a reference for the design and development of a new generation of catalysts to assist in the realization of successful commercial use that have the potential to decarbonize the domestic heat and…mehr
One-dimensional Nanostructures for PEM Fuel Cell Applications provides a review of the progress made in 1D catalysts for applications in polymer electrolyte fuel cells. It highlights the improved understanding of catalytic mechanisms on 1D nanostructures and the new approaches developed for practical applications, also including a critical perspective on current research limits. The book serves as a reference for the design and development of a new generation of catalysts to assist in the realization of successful commercial use that have the potential to decarbonize the domestic heat and transport sectors.
In addition, a further commercialization of this technology requires advanced catalysts to address major obstacles faced by the commonly used Pt/C nanoparticles. The unique structure of one-dimensional nanostructures give them advantages to overcome some drawbacks of Pt/C nanoparticles as a new type of excellent catalysts for fuel cell reactions. In recent years,great efforts have been devoted in this area, and much progress has been achieved. Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
After a first degree in Materials Science and Engineering, Tsinghua University and a PhD degree in Chemical Engineering from the Institute of Process Engineering, Chinese Academy of Sciences, China, in 2005, Shangfeng DU moved to the Max Planck Institute for Metals Research, Germany. After that, he joined the Centre for Fuel Cell and Hydrogen Research (CFCHR) at the University of Birmingham (UoB), UK, supported by Marie Curie Incoming International Fellowship (IIF) (awarded in 2006). At UoB, he collaborated with Prof Kevin Kendall FRS, a pioneer in the field of particles and fuel cells (builder of the famous JKR adhesion theory, retired in 2011). In 2009, Shangfeng was awarded a research fellowship from the Science City Research Alliance (SCRA) through the Higher Education Funding Council for England (HEFCE) Strategic Development Fund and established himself as an independent researcher. In 2015, Shangfeng was appointed as a lecturer and built the Low Temperature Fuel Cell Research Group as part of the Centre. Shangfeng DU has spent 10 years researching electrodes for low temperature fuel cells and the characterisation of nanoparticle behavior for energy and health applications. He is recognized for his expertise in the field of one-dimensional (1D) materials for fuel cell applications, and has introduced the unique category of integrates thin film electrodes from 1D nanostructures for PEMFC application. Shangfeng is an Editorial Board Member of Scientific Reports, and has authored more than 40 original refereed papers, reviews, book and book chapters.
Inhaltsangabe
1. Introduction 2. Advantages of 1D nanostructures for fuel cell applications 3. Preparation of 1D Catalysts 4. 1D nanostructured catalysts for oxygen reduction reaction (ORR) 5. 1D nanostructured catalysts for hydrocarbon oxidation reaction 6. Summary and Perspective