50,28 €
inkl. MwSt.
Sofort per Download lieferbar
  • Format: PDF

Calcium is crucial in governing contractile activities of myofilaments in cardiomyocytes, any defeats in calcium homeostasis of the cells would adversely affect heart pumping action. The characterization of calcium handling properties in human induced pluripotent stem cell-derived cardiomyocytes (iPS-CMCs) is of significant interest and pertinent to the stem cell and cardiac regenerative field because of their potential patient-specific therapeutic use.

Produktbeschreibung
Calcium is crucial in governing contractile activities of myofilaments in cardiomyocytes, any defeats in calcium homeostasis of the cells would adversely affect heart pumping action. The characterization of calcium handling properties in human induced pluripotent stem cell-derived cardiomyocytes (iPS-CMCs) is of significant interest and pertinent to the stem cell and cardiac regenerative field because of their potential patient-specific therapeutic use.
Autorenporträt
The principle author, Dr. Lee Yee-Ki, is a PhD graduate in the University of Hong Kong. Her research interests focus on hypertrophy signal-driven cardiac differentiation and stem cell-derived cardiomyocytes maturation. Her interest was further extrapolated to maturity of hiPSC-CMC by studying comparing calcium homeostasis with human embryonic stem cell (hESC)-CMC. She has altogether 10 papers in stem cell related field with 4 as primary author in international journals like Molecular Endocrinology and Stem Cell Reviews.

The corresponding author, Dr. Siu Chung-Wah, MD, is currently a Associate Professor in the Division of Cardiology, the University of Hong Kong. His current research interests focus on atrial fibrillation, heart failure, and the development of bio-artificial pacemaker for treating sick sinus syndrome, tissue engineering of myocardium, and human embryonic stem cell and induced pluripotent stem cell for regenerative medicine. He has published total 112 peer reviewed articles of clinical research and basic science in international journals such as JAMA, Circulation, JACC, Blood, Stem Cells, Stem Cell reviews, Molecular Endocrinology, Journal of Metabolism and Clinical Endocrinology, and 10 book chapters in cardiology.
Rezensionen
From the reviews:
"The book presents a method to address one of the major safety issues currently limiting the clinical application of hiPSC-CMC by providing an approach to assess hiPSC-CMC maturity. It is most suitable for researchers working with both embryonic stem cell (ESC) and hiPSC derived cardiomyocytes. ... this book has the potential to serve as a stepping stone towards the development of personalized in vitro models of cardiac tissue in addition to clinical applications." (Christina A. Michael, Doody's Review Service, October, 2012)