70,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
35 °P sammeln
  • Broschiertes Buch

The modern era is witnessing a revolution in the ability to scale computations to massively large data sets. A key breakthrough in scalability was the introduction of fast and easy-to-use distributed programming models such as the Massively Parallel Model of Computation (MPC) framework (also known as MapReduce). The framework describes algorithmic tools that have been developed to leverage the unique features of the MPC framework. These tools were chosen for their broad applicability, as they can serve as building blocks to design new algorithms. In this monograph the authors describe in…mehr

Produktbeschreibung
The modern era is witnessing a revolution in the ability to scale computations to massively large data sets. A key breakthrough in scalability was the introduction of fast and easy-to-use distributed programming models such as the Massively Parallel Model of Computation (MPC) framework (also known as MapReduce). The framework describes algorithmic tools that have been developed to leverage the unique features of the MPC framework. These tools were chosen for their broad applicability, as they can serve as building blocks to design new algorithms. In this monograph the authors describe in detail certain tools available in the framework that are generally applicable and can be used as building blocks to design algorithms in the area. These include Partitioning and Coresets, sample and prune, dynamic programming, round compression, and lower bounds. This monograph provides the reader with an accessible introduction to the most important tools of a framework used for the design of new algorithms deployed in systems using massively parallel computation.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.