Yang Xu, Khurram Shehzad, Srikrishna Chanakya Bodepudi
Graphene for Post-Moore Silicon Optoelectronics
Yang Xu, Khurram Shehzad, Srikrishna Chanakya Bodepudi
Graphene for Post-Moore Silicon Optoelectronics
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
summarizing all aspects of graphene-Silicon integrated devices in optoelectronics in the post-Moore era.
Andere Kunden interessierten sich auch für
- Zhigang ZangMetal Oxide Semiconductors105,99 €
- Van der Waals Heterostructures149,00 €
- Graphene Field-Effect Transistors122,99 €
- Flexible Electronic Packaging and Encapsulation Technology113,99 €
- Hong MengColloidal Quantum Dot Light Emitting Diodes112,99 €
- Hong MengPerovskite Light Emitting Diodes112,99 €
- Thermal Management Materials for Electronic Packaging112,99 €
-
-
-
summarizing all aspects of graphene-Silicon integrated devices in optoelectronics in the post-Moore era.
Produktdetails
- Produktdetails
- Verlag: Wiley-VCH
- Artikelnr. des Verlages: 1135181 000
- 1. Auflage
- Seitenzahl: 192
- Erscheinungstermin: 22. Februar 2023
- Englisch
- Abmessung: 250mm x 172mm x 15mm
- Gewicht: 528g
- ISBN-13: 9783527351817
- ISBN-10: 3527351817
- Artikelnr.: 65444736
- Herstellerkennzeichnung
- Wiley-VCH GmbH
- Boschstraße 12
- 69469 Weinheim
- wiley.buha@zeitfracht.de
- 06201 6060
- Verlag: Wiley-VCH
- Artikelnr. des Verlages: 1135181 000
- 1. Auflage
- Seitenzahl: 192
- Erscheinungstermin: 22. Februar 2023
- Englisch
- Abmessung: 250mm x 172mm x 15mm
- Gewicht: 528g
- ISBN-13: 9783527351817
- ISBN-10: 3527351817
- Artikelnr.: 65444736
- Herstellerkennzeichnung
- Wiley-VCH GmbH
- Boschstraße 12
- 69469 Weinheim
- wiley.buha@zeitfracht.de
- 06201 6060
Yang Xu is a full professor and Assistant Dean at the School of Micro-Nano Electronics, Zhejiang University, China. He is an IEEE NTC Distinguished Lecturer and Senior Member of the IEEE Electron Devices Society. His current research interests include emerging low-dimensional smart sensors, photodetectors, and actuators for internet-of-things and flexible electronics. Khurram Shehzad served as a Research Associate Professor at the School of Micro-Nano Electronics, Zhejiang University, China. Srikrishna Chanakya Bodepudi is a Distinguished Research Fellow at the School of Micro-Nano Electronics, Zhejiang University, China. Ali Imran is perusing his research at School of Micro-Nano Electronics, Zhejiang University, China. Bin Yu is a full professor at the School of Micro-Nano Electronics, Zhejiang University, China. His current research interests include nanoelectronics, sensors, and neuromorphic devices.
1 INTRODUCTION OF GRAPHENE FOR SILICON OPTOELECTRONICS
1.1 Introduction
1.2 Optical Absorption
1.3 Emergence of Graphene in Silicon Optoelectronics
1.4 Photodetection in Graphene
1.5 Outlook
2 GROWTH AND TRANSFER OF GRAPHENE FOR SILICON OPTOELECTRONICS
2.1 Introduction
2.2 Growth of Graphene
2.3 Dielectric deposition on Graphene
2.4 Graphene Transfer Methods
2.5 Fabrication of Solution Processed Graphene and Integration with Silicon
2.6 Graphene Transfer on Flexible Silicon
2.7 Graphene integration with Silicon CMOS Process
2.8 Challenges and Future Perspectives
3 PHYSICS OF GRAPHENE/SILICON JUNCTIONS
3.1 Introduction
3.2 Physics of Schottky Junction
3.3 Measurement of Schottky Barrier Height
3.4 2D Materials and Schottky Junctions
3.5 Challenges and Future Perspectives
4 GRAPHENE/SILICON JUNCTION FOR HIGH PERFORMANCE PHOTODETECTORS
4.1 Introduction
4.2 Ultraviolet Photodetectors
4.3 Visible to Near Infrared Photodetectors
4.4 Broadband Photodetectors
4.5 Hybrid Graphene/Silicon Photodetectors
4.6 Challenges and Perspectives
5 GRAPHENE/SILICON SOLAR ENERGY HARVESTING DEVICES
5.1 Introduction
5.2 Photovoltaic Mechanism and Performance Parameters in Graphene/Silicon Solar Cells
5.3 Theoretical Efficiency Limits of Graphene/Silicon Solar Cells
5.4 Optimization of Graphene/Silicon Solar Cells
5.5 Challenges and Perspectives
6 GRAPHENE SILICON INTEGRATED WAVEGUIDE DEVICES
6.1 Introduction
6.2 Hybrid Waveguide Photodetector
6.3 Hybrid Waveguide Modulator
6.4 Challenges and Perspectives
7 GRAPHENE FOR SILICON IMAGE SENSOR
7.1 Introduction
7.2 Quantum Dot based Infrared Graphene Image Sensor
7.3 Graphene Thermopile Image Sensor
7.4 Graphene THz Image Sensor
7.5 Curved Image Sensor Array
7.6 Neural Network Image Sensors
7.7 Graphene Charge Coupled Device Image Sensor
7.8 Graphene Based Position Sensitive Detector
7.9 Challenges and Perspectives
8 SYSTEM INTEGRATION WITH GRAPHENE FOR SILICON OPTOELECTRONICS
8.1 Introduction
8.2 Graphene Silicon Flip Chips
8.3 Graphene Silicon Heterogeneous Integration
8.4 Graphene Silicon Monolithic Integration for Optoelectronics Applications
8.5 Challenges and Prospective
9 GRAPHENE FOR SILICON OPTOELECTRONIC SYNAPTIC DEVICES
9.1 Introduction
9.2 Silicon Neurons
9.3 Synaptic devices
9.4 Silicon Optoelectronic Synaptic Devices
9.5 ORAM Synaptic Devices
9.6 Graphene for Silicon Synaptic Devices
9.7 Synaptic Phototransistor
9.8 Mechano-photonic Synaptic Transistor
9.9 Challenges and Prospects
10 CHALLENGES AND PROSPECTS OF GRAPHENE/SILICON OPTOELECTRONICS
10.1 Emergence of Wafer Scale Systems
10.2 Wafer Scale Synthesis and Foundry Process
10.3 Scalable Transfer and Quality Metrics
10.4 Scaling Laws and Hot Electron Effects
10.5 Optical Modulators
10.6 Infrared Photodetectors
10.7 Neuromorphic Optoelectronics
1.1 Introduction
1.2 Optical Absorption
1.3 Emergence of Graphene in Silicon Optoelectronics
1.4 Photodetection in Graphene
1.5 Outlook
2 GROWTH AND TRANSFER OF GRAPHENE FOR SILICON OPTOELECTRONICS
2.1 Introduction
2.2 Growth of Graphene
2.3 Dielectric deposition on Graphene
2.4 Graphene Transfer Methods
2.5 Fabrication of Solution Processed Graphene and Integration with Silicon
2.6 Graphene Transfer on Flexible Silicon
2.7 Graphene integration with Silicon CMOS Process
2.8 Challenges and Future Perspectives
3 PHYSICS OF GRAPHENE/SILICON JUNCTIONS
3.1 Introduction
3.2 Physics of Schottky Junction
3.3 Measurement of Schottky Barrier Height
3.4 2D Materials and Schottky Junctions
3.5 Challenges and Future Perspectives
4 GRAPHENE/SILICON JUNCTION FOR HIGH PERFORMANCE PHOTODETECTORS
4.1 Introduction
4.2 Ultraviolet Photodetectors
4.3 Visible to Near Infrared Photodetectors
4.4 Broadband Photodetectors
4.5 Hybrid Graphene/Silicon Photodetectors
4.6 Challenges and Perspectives
5 GRAPHENE/SILICON SOLAR ENERGY HARVESTING DEVICES
5.1 Introduction
5.2 Photovoltaic Mechanism and Performance Parameters in Graphene/Silicon Solar Cells
5.3 Theoretical Efficiency Limits of Graphene/Silicon Solar Cells
5.4 Optimization of Graphene/Silicon Solar Cells
5.5 Challenges and Perspectives
6 GRAPHENE SILICON INTEGRATED WAVEGUIDE DEVICES
6.1 Introduction
6.2 Hybrid Waveguide Photodetector
6.3 Hybrid Waveguide Modulator
6.4 Challenges and Perspectives
7 GRAPHENE FOR SILICON IMAGE SENSOR
7.1 Introduction
7.2 Quantum Dot based Infrared Graphene Image Sensor
7.3 Graphene Thermopile Image Sensor
7.4 Graphene THz Image Sensor
7.5 Curved Image Sensor Array
7.6 Neural Network Image Sensors
7.7 Graphene Charge Coupled Device Image Sensor
7.8 Graphene Based Position Sensitive Detector
7.9 Challenges and Perspectives
8 SYSTEM INTEGRATION WITH GRAPHENE FOR SILICON OPTOELECTRONICS
8.1 Introduction
8.2 Graphene Silicon Flip Chips
8.3 Graphene Silicon Heterogeneous Integration
8.4 Graphene Silicon Monolithic Integration for Optoelectronics Applications
8.5 Challenges and Prospective
9 GRAPHENE FOR SILICON OPTOELECTRONIC SYNAPTIC DEVICES
9.1 Introduction
9.2 Silicon Neurons
9.3 Synaptic devices
9.4 Silicon Optoelectronic Synaptic Devices
9.5 ORAM Synaptic Devices
9.6 Graphene for Silicon Synaptic Devices
9.7 Synaptic Phototransistor
9.8 Mechano-photonic Synaptic Transistor
9.9 Challenges and Prospects
10 CHALLENGES AND PROSPECTS OF GRAPHENE/SILICON OPTOELECTRONICS
10.1 Emergence of Wafer Scale Systems
10.2 Wafer Scale Synthesis and Foundry Process
10.3 Scalable Transfer and Quality Metrics
10.4 Scaling Laws and Hot Electron Effects
10.5 Optical Modulators
10.6 Infrared Photodetectors
10.7 Neuromorphic Optoelectronics
1 INTRODUCTION OF GRAPHENE FOR SILICON OPTOELECTRONICS
1.1 Introduction
1.2 Optical Absorption
1.3 Emergence of Graphene in Silicon Optoelectronics
1.4 Photodetection in Graphene
1.5 Outlook
2 GROWTH AND TRANSFER OF GRAPHENE FOR SILICON OPTOELECTRONICS
2.1 Introduction
2.2 Growth of Graphene
2.3 Dielectric deposition on Graphene
2.4 Graphene Transfer Methods
2.5 Fabrication of Solution Processed Graphene and Integration with Silicon
2.6 Graphene Transfer on Flexible Silicon
2.7 Graphene integration with Silicon CMOS Process
2.8 Challenges and Future Perspectives
3 PHYSICS OF GRAPHENE/SILICON JUNCTIONS
3.1 Introduction
3.2 Physics of Schottky Junction
3.3 Measurement of Schottky Barrier Height
3.4 2D Materials and Schottky Junctions
3.5 Challenges and Future Perspectives
4 GRAPHENE/SILICON JUNCTION FOR HIGH PERFORMANCE PHOTODETECTORS
4.1 Introduction
4.2 Ultraviolet Photodetectors
4.3 Visible to Near Infrared Photodetectors
4.4 Broadband Photodetectors
4.5 Hybrid Graphene/Silicon Photodetectors
4.6 Challenges and Perspectives
5 GRAPHENE/SILICON SOLAR ENERGY HARVESTING DEVICES
5.1 Introduction
5.2 Photovoltaic Mechanism and Performance Parameters in Graphene/Silicon Solar Cells
5.3 Theoretical Efficiency Limits of Graphene/Silicon Solar Cells
5.4 Optimization of Graphene/Silicon Solar Cells
5.5 Challenges and Perspectives
6 GRAPHENE SILICON INTEGRATED WAVEGUIDE DEVICES
6.1 Introduction
6.2 Hybrid Waveguide Photodetector
6.3 Hybrid Waveguide Modulator
6.4 Challenges and Perspectives
7 GRAPHENE FOR SILICON IMAGE SENSOR
7.1 Introduction
7.2 Quantum Dot based Infrared Graphene Image Sensor
7.3 Graphene Thermopile Image Sensor
7.4 Graphene THz Image Sensor
7.5 Curved Image Sensor Array
7.6 Neural Network Image Sensors
7.7 Graphene Charge Coupled Device Image Sensor
7.8 Graphene Based Position Sensitive Detector
7.9 Challenges and Perspectives
8 SYSTEM INTEGRATION WITH GRAPHENE FOR SILICON OPTOELECTRONICS
8.1 Introduction
8.2 Graphene Silicon Flip Chips
8.3 Graphene Silicon Heterogeneous Integration
8.4 Graphene Silicon Monolithic Integration for Optoelectronics Applications
8.5 Challenges and Prospective
9 GRAPHENE FOR SILICON OPTOELECTRONIC SYNAPTIC DEVICES
9.1 Introduction
9.2 Silicon Neurons
9.3 Synaptic devices
9.4 Silicon Optoelectronic Synaptic Devices
9.5 ORAM Synaptic Devices
9.6 Graphene for Silicon Synaptic Devices
9.7 Synaptic Phototransistor
9.8 Mechano-photonic Synaptic Transistor
9.9 Challenges and Prospects
10 CHALLENGES AND PROSPECTS OF GRAPHENE/SILICON OPTOELECTRONICS
10.1 Emergence of Wafer Scale Systems
10.2 Wafer Scale Synthesis and Foundry Process
10.3 Scalable Transfer and Quality Metrics
10.4 Scaling Laws and Hot Electron Effects
10.5 Optical Modulators
10.6 Infrared Photodetectors
10.7 Neuromorphic Optoelectronics
1.1 Introduction
1.2 Optical Absorption
1.3 Emergence of Graphene in Silicon Optoelectronics
1.4 Photodetection in Graphene
1.5 Outlook
2 GROWTH AND TRANSFER OF GRAPHENE FOR SILICON OPTOELECTRONICS
2.1 Introduction
2.2 Growth of Graphene
2.3 Dielectric deposition on Graphene
2.4 Graphene Transfer Methods
2.5 Fabrication of Solution Processed Graphene and Integration with Silicon
2.6 Graphene Transfer on Flexible Silicon
2.7 Graphene integration with Silicon CMOS Process
2.8 Challenges and Future Perspectives
3 PHYSICS OF GRAPHENE/SILICON JUNCTIONS
3.1 Introduction
3.2 Physics of Schottky Junction
3.3 Measurement of Schottky Barrier Height
3.4 2D Materials and Schottky Junctions
3.5 Challenges and Future Perspectives
4 GRAPHENE/SILICON JUNCTION FOR HIGH PERFORMANCE PHOTODETECTORS
4.1 Introduction
4.2 Ultraviolet Photodetectors
4.3 Visible to Near Infrared Photodetectors
4.4 Broadband Photodetectors
4.5 Hybrid Graphene/Silicon Photodetectors
4.6 Challenges and Perspectives
5 GRAPHENE/SILICON SOLAR ENERGY HARVESTING DEVICES
5.1 Introduction
5.2 Photovoltaic Mechanism and Performance Parameters in Graphene/Silicon Solar Cells
5.3 Theoretical Efficiency Limits of Graphene/Silicon Solar Cells
5.4 Optimization of Graphene/Silicon Solar Cells
5.5 Challenges and Perspectives
6 GRAPHENE SILICON INTEGRATED WAVEGUIDE DEVICES
6.1 Introduction
6.2 Hybrid Waveguide Photodetector
6.3 Hybrid Waveguide Modulator
6.4 Challenges and Perspectives
7 GRAPHENE FOR SILICON IMAGE SENSOR
7.1 Introduction
7.2 Quantum Dot based Infrared Graphene Image Sensor
7.3 Graphene Thermopile Image Sensor
7.4 Graphene THz Image Sensor
7.5 Curved Image Sensor Array
7.6 Neural Network Image Sensors
7.7 Graphene Charge Coupled Device Image Sensor
7.8 Graphene Based Position Sensitive Detector
7.9 Challenges and Perspectives
8 SYSTEM INTEGRATION WITH GRAPHENE FOR SILICON OPTOELECTRONICS
8.1 Introduction
8.2 Graphene Silicon Flip Chips
8.3 Graphene Silicon Heterogeneous Integration
8.4 Graphene Silicon Monolithic Integration for Optoelectronics Applications
8.5 Challenges and Prospective
9 GRAPHENE FOR SILICON OPTOELECTRONIC SYNAPTIC DEVICES
9.1 Introduction
9.2 Silicon Neurons
9.3 Synaptic devices
9.4 Silicon Optoelectronic Synaptic Devices
9.5 ORAM Synaptic Devices
9.6 Graphene for Silicon Synaptic Devices
9.7 Synaptic Phototransistor
9.8 Mechano-photonic Synaptic Transistor
9.9 Challenges and Prospects
10 CHALLENGES AND PROSPECTS OF GRAPHENE/SILICON OPTOELECTRONICS
10.1 Emergence of Wafer Scale Systems
10.2 Wafer Scale Synthesis and Foundry Process
10.3 Scalable Transfer and Quality Metrics
10.4 Scaling Laws and Hot Electron Effects
10.5 Optical Modulators
10.6 Infrared Photodetectors
10.7 Neuromorphic Optoelectronics