Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence
Linear Algebra (eBook, PDF)
Pearson New International Edition
43,95 €
43,95 €
inkl. MwSt.
Sofort per Download lieferbar
43,95 €
Als Download kaufen
43,95 €
inkl. MwSt.
Sofort per Download lieferbar
Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence
Linear Algebra (eBook, PDF)
Pearson New International Edition
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
For courses in Advanced Linear Algebra.
This top-selling, theorem-proof text presents a careful treatment of the principle topics of linear algebra, and illustrates the power of the subject through a variety of applications. It emphasizes the symbiotic relationship between linear transformations and matrices, but states theorems in the more general infinite-dimensional case where appropriate.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
Andere Kunden interessierten sich auch für
- John B. FraleighFirst Course in Abstract Algebra, A (eBook, PDF)43,95 €
- Robert F. BlitzerCollege Algebra (eBook, PDF)43,95 €
- Kuldeep SinghLinear Algebra (eBook, PDF)23,95 €
- James R. KirkwoodLinear Algebra (eBook, PDF)59,95 €
- William R. WadeIntroduction to Analysis (eBook, PDF)43,95 €
- Mary Jane SterlingLinear Algebra For Dummies (eBook, PDF)16,99 €
- -24%11Jens KunathHochschulmathematik mit Octave verstehen und anwenden (eBook, PDF)24,99 €
- -20%11
- -24%11
-
For courses in Advanced Linear Algebra.
This top-selling, theorem-proof text presents a careful treatment of the principle topics of linear algebra, and illustrates the power of the subject through a variety of applications. It emphasizes the symbiotic relationship between linear transformations and matrices, but states theorems in the more general infinite-dimensional case where appropriate.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Pearson HigherEducation
- Seitenzahl: 536
- Altersempfehlung: ab 18 Jahre
- Erscheinungstermin: 29. August 2013
- Englisch
- ISBN-13: 9781292038896
- Artikelnr.: 41939877
- Verlag: Pearson HigherEducation
- Seitenzahl: 536
- Altersempfehlung: ab 18 Jahre
- Erscheinungstermin: 29. August 2013
- Englisch
- ISBN-13: 9781292038896
- Artikelnr.: 41939877
1. Vector Spaces.
Introduction. Vector Spaces. Subspaces. Linear Combinations and Systems of
Linear Equations. Linear Dependence and Linear Independence. Bases and
Dimension. Maximal Linearly Independent Subsets.
2. Linear Transformations and Matrices.
Linear Transformations, Null Spaces, and Ranges. The Matrix Representation
of a Linear Transformation. Composition of Linear Transformations and
Matrix Multiplication. Invertibility and Isomorphisms. The Change of
Coordinate Matrix. Dual Spaces. Homogeneous Linear Differential Equations
with Constant Coefficients.
3. Elementary Matrix Operations and Systems of Linear Equations.
Elementary Matrix Operations and Elementary Matrices. The Rank of a Matrix
and Matrix Inverses. Systems of Linear Equations—Theoretical Aspects.
Systems of Linear Equations—Computational Aspects.
4. Determinants.
Determinants of Order 2. Determinants of Order n. Properties of
Determinants. Summary—Important Facts about Determinants. A
Characterization of the Determinant.
5. Diagonalization.
Eigenvalues and Eigenvectors. Diagonalizability. Matrix Limits and Markov
Chains. Invariant Subspaces and the Cayley-Hamilton Theorem.
6. Inner Product Spaces.
Inner Products and Norms. The Gram-Schmidt Orthogonalization Process and
Orthogonal Complements. The Adjoint of a Linear Operator. Normal and
Self-Adjoint Operators. Unitary and Orthogonal Operators and Their
Matrices. Orthogonal Projections and the Spectral Theorem. The Singular
Value Decomposition and the Pseudoinverse. Bilinear and Quadratic Forms.
Einstein's Special Theory of Relativity. Conditioning and the Rayleigh
Quotient. The Geometry of Orthogonal Operators.
Appendices.
Sets. Functions. Fields. Complex Numbers. Polynomials.
Answers to Selected Exercises.
Index.
Introduction. Vector Spaces. Subspaces. Linear Combinations and Systems of
Linear Equations. Linear Dependence and Linear Independence. Bases and
Dimension. Maximal Linearly Independent Subsets.
2. Linear Transformations and Matrices.
Linear Transformations, Null Spaces, and Ranges. The Matrix Representation
of a Linear Transformation. Composition of Linear Transformations and
Matrix Multiplication. Invertibility and Isomorphisms. The Change of
Coordinate Matrix. Dual Spaces. Homogeneous Linear Differential Equations
with Constant Coefficients.
3. Elementary Matrix Operations and Systems of Linear Equations.
Elementary Matrix Operations and Elementary Matrices. The Rank of a Matrix
and Matrix Inverses. Systems of Linear Equations—Theoretical Aspects.
Systems of Linear Equations—Computational Aspects.
4. Determinants.
Determinants of Order 2. Determinants of Order n. Properties of
Determinants. Summary—Important Facts about Determinants. A
Characterization of the Determinant.
5. Diagonalization.
Eigenvalues and Eigenvectors. Diagonalizability. Matrix Limits and Markov
Chains. Invariant Subspaces and the Cayley-Hamilton Theorem.
6. Inner Product Spaces.
Inner Products and Norms. The Gram-Schmidt Orthogonalization Process and
Orthogonal Complements. The Adjoint of a Linear Operator. Normal and
Self-Adjoint Operators. Unitary and Orthogonal Operators and Their
Matrices. Orthogonal Projections and the Spectral Theorem. The Singular
Value Decomposition and the Pseudoinverse. Bilinear and Quadratic Forms.
Einstein's Special Theory of Relativity. Conditioning and the Rayleigh
Quotient. The Geometry of Orthogonal Operators.
Appendices.
Sets. Functions. Fields. Complex Numbers. Polynomials.
Answers to Selected Exercises.
Index.
1. Vector Spaces.
Introduction. Vector Spaces. Subspaces. Linear Combinations and Systems of
Linear Equations. Linear Dependence and Linear Independence. Bases and
Dimension. Maximal Linearly Independent Subsets.
2. Linear Transformations and Matrices.
Linear Transformations, Null Spaces, and Ranges. The Matrix Representation
of a Linear Transformation. Composition of Linear Transformations and
Matrix Multiplication. Invertibility and Isomorphisms. The Change of
Coordinate Matrix. Dual Spaces. Homogeneous Linear Differential Equations
with Constant Coefficients.
3. Elementary Matrix Operations and Systems of Linear Equations.
Elementary Matrix Operations and Elementary Matrices. The Rank of a Matrix
and Matrix Inverses. Systems of Linear Equations—Theoretical Aspects.
Systems of Linear Equations—Computational Aspects.
4. Determinants.
Determinants of Order 2. Determinants of Order n. Properties of
Determinants. Summary—Important Facts about Determinants. A
Characterization of the Determinant.
5. Diagonalization.
Eigenvalues and Eigenvectors. Diagonalizability. Matrix Limits and Markov
Chains. Invariant Subspaces and the Cayley-Hamilton Theorem.
6. Inner Product Spaces.
Inner Products and Norms. The Gram-Schmidt Orthogonalization Process and
Orthogonal Complements. The Adjoint of a Linear Operator. Normal and
Self-Adjoint Operators. Unitary and Orthogonal Operators and Their
Matrices. Orthogonal Projections and the Spectral Theorem. The Singular
Value Decomposition and the Pseudoinverse. Bilinear and Quadratic Forms.
Einstein's Special Theory of Relativity. Conditioning and the Rayleigh
Quotient. The Geometry of Orthogonal Operators.
Appendices.
Sets. Functions. Fields. Complex Numbers. Polynomials.
Answers to Selected Exercises.
Index.
Introduction. Vector Spaces. Subspaces. Linear Combinations and Systems of
Linear Equations. Linear Dependence and Linear Independence. Bases and
Dimension. Maximal Linearly Independent Subsets.
2. Linear Transformations and Matrices.
Linear Transformations, Null Spaces, and Ranges. The Matrix Representation
of a Linear Transformation. Composition of Linear Transformations and
Matrix Multiplication. Invertibility and Isomorphisms. The Change of
Coordinate Matrix. Dual Spaces. Homogeneous Linear Differential Equations
with Constant Coefficients.
3. Elementary Matrix Operations and Systems of Linear Equations.
Elementary Matrix Operations and Elementary Matrices. The Rank of a Matrix
and Matrix Inverses. Systems of Linear Equations—Theoretical Aspects.
Systems of Linear Equations—Computational Aspects.
4. Determinants.
Determinants of Order 2. Determinants of Order n. Properties of
Determinants. Summary—Important Facts about Determinants. A
Characterization of the Determinant.
5. Diagonalization.
Eigenvalues and Eigenvectors. Diagonalizability. Matrix Limits and Markov
Chains. Invariant Subspaces and the Cayley-Hamilton Theorem.
6. Inner Product Spaces.
Inner Products and Norms. The Gram-Schmidt Orthogonalization Process and
Orthogonal Complements. The Adjoint of a Linear Operator. Normal and
Self-Adjoint Operators. Unitary and Orthogonal Operators and Their
Matrices. Orthogonal Projections and the Spectral Theorem. The Singular
Value Decomposition and the Pseudoinverse. Bilinear and Quadratic Forms.
Einstein's Special Theory of Relativity. Conditioning and the Rayleigh
Quotient. The Geometry of Orthogonal Operators.
Appendices.
Sets. Functions. Fields. Complex Numbers. Polynomials.
Answers to Selected Exercises.
Index.