Sudharman K Jayaweera
Signal Processing for Cognitive Radios
Sudharman K Jayaweera
Signal Processing for Cognitive Radios
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book examines signal processing techniques for cognitive radios. The book is divided into three parts. Part I, Introduction to Cognitive Radios (CR), presents a history of the CR and introduces their architecture, functionalities, ideal aspects, hardware platforms, and state-of-the-art developments. The author also introduces the specific type of CR that has gained the most research attention in recent years--the CR for Dynamic Spectrum Access (DSA). Part II, Theoretical Foundations, guides the reader from classical to modern theories on statistical signal processing and inference. The…mehr
Andere Kunden interessierten sich auch für
- Digital Filters Design for Signal and Image Processing345,99 €
- Aminghasem SafarianSilicon-Based RF Front-Ends for Ultra Wideband Radios74,99 €
- Liesbet Van der PerreGreen Software Defined Radios74,99 €
- How To Service Radios With An Oscilloscope34,99 €
- Emanuele LopelliArchitectures and Synthesizers for Ultra-Low Power Fast Frequency-Hopping Wsn Radios110,99 €
- Emanuele LopelliArchitectures and Synthesizers for Ultra-low Power Fast Frequency-Hopping WSN Radios110,99 €
- Liesbet Van der PerreGreen Software Defined Radios74,99 €
-
-
-
This book examines signal processing techniques for cognitive radios. The book is divided into three parts. Part I, Introduction to Cognitive Radios (CR), presents a history of the CR and introduces their architecture, functionalities, ideal aspects, hardware platforms, and state-of-the-art developments. The author also introduces the specific type of CR that has gained the most research attention in recent years--the CR for Dynamic Spectrum Access (DSA). Part II, Theoretical Foundations, guides the reader from classical to modern theories on statistical signal processing and inference. The author addresses detection and estimation theory, power spectrum estimation, classification, and inference and decision processes. Applications to the signal processing, and inference and learning problems encountered in CRs are interspersed throughout with concrete and accessible examples. Part III, Signal Processing in Cognitive Radios, identifies the key signal processing, inference, and learning tasks to be performed by wideband autonomous CRs. The author provides signal processing solutions to each task by relating the tasks to materials covered in Part II. Specialized chapters then discuss specific signal processing algorithms required for DSA and DSS, cooperative communications and machine learning in cognitive radios.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 768
- Erscheinungstermin: 3. Dezember 2014
- Englisch
- Abmessung: 236mm x 157mm x 43mm
- Gewicht: 1157g
- ISBN-13: 9781118824931
- ISBN-10: 1118824938
- Artikelnr.: 40456322
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Wiley
- Seitenzahl: 768
- Erscheinungstermin: 3. Dezember 2014
- Englisch
- Abmessung: 236mm x 157mm x 43mm
- Gewicht: 1157g
- ISBN-13: 9781118824931
- ISBN-10: 1118824938
- Artikelnr.: 40456322
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
SUDHARMAN K. JAYAWEERA earned his BE in Electrical Engineering from the University of Melbourne, Australia. He earned his MA and PhD degrees in Electrical Engineering from Princeton University, USA. He is currently an Associate Professor in Electrical Engineering at the University of New Mexico, Albuquerque, NM, USA. His research expertise is in signal processing and wireless communications. DR. JAYAWEERA is a senior member of the IEEE. Currently he serves as the Associate Editor of IEEE Transactions on Vehicular Technology.
Preface xv
Part I Introduction to Cognitive Radios 1
1 Introduction 3
1.1 Introduction 3
1.2 Signal Processing and Cognitive Radios 4
1.3 Software-Defined Radios 6
1.3.1 Software-Defined Radio Platforms 14
1.3.2 Software-Defined Radio Systems 15
1.4 From Software-Defined Radios to Cognitive Radios 19
1.4.1 The Spectrum Scarcity Problem 19
1.4.2 Emergence of CRs 21
1.5 What this Book is About 22
1.6 Summary 26
2 The Cognitive Radio 27
2.1 Introduction 27
2.2 A Functional Model of a Cognitive Radio 30
2.2.1 Spectrum Knowledge Acquisition (Spectrum Awareness) 30
2.2.2 Communications Decision-Making 33
2.2.3 Learning in Cognitive Radios 33
2.3 The Cognitive Radio Architecture 35
2.3.1 Spectrum Sensing Region of a Cognitive Engine 36
2.3.2 Radio Reconfiguration Region of a Cognitive Engine 36
2.3.3 Learning Region of a Cognitive Engine 37
2.3.4 Memory Region of a Cognitive Engine 37
2.4 The Ideal Cognitive Radio 38
2.5 Signal Processing Challenges in Cognitive Radios 39
2.6 Summary 40
3 Cognitive Radios and Dynamic Spectrum Sharing 42
3.1 Introduction 42
3.2 Interference and Spectrum Opportunities 46
3.3 Dynamic Spectrum Access 50
3.4 Dynamic Spectrum Leasing 54
3.5 Challenges in DSS Cognitive Radios 55
3.6 Cognitive Radios and Future of Wireless Communications 60
3.7 Summary 61
Part II theoretical foundations 65
4 Introduction to Detection Theory 67
4.1 Introduction 67
4.2 Optimality Criteria: Bayesian versus Non-Bayesian 71
4.2.1 The Bayesian Approach 72
4.2.2 A Non-Bayesian Approach: Neyman-Pearson Optimality Criterion 73
4.3 Parametric Signal Detection Theory 75
4.3.1 Bayesian Optimal Detection 76
4.3.2 Neyman-Pearson Optimal Detection 82
4.3.3 Another Non-Bayesian Alternative: The Generalized Likelihood Ratio
Test 99
4.3.4 Parametric Signal Detection in Additive Noise 103
4.4 Nonparametric Signal Detection Theory 122
4.4.1 Signal Detection in Additive Zero-Median Noise: The Sign Test 124
4.4.2 Signal Detection in Additive Symmetric Noise: The Rank Test 125
4.4.3 Signal Detection in Additive Zero Median, Zero Mean, Finite-Variance
Noise: The t-Test 126
4.5 Summary 127
5 Introduction to Estimation Theory 132
5.1 Introduction 132
5.2 Random Parameter Estimation: Bayesian Estimation 134
5.2.1 Minimum Mean-Squared Error Estimation 134
5.2.2 MMSE Estimation of Vector Parameters 135
5.2.3 Linear Minimum Mean-Squared Error Estimation 138
5.2.4 Maximum A Posteriori Probability Estimation 139
5.3 Nonrandom Parameter Estimation 140
5.3.1 Theory of Minimum Variance Unbiased Estimation 142
5.3.2 Best Linear Unbiased Estimator 147
5.3.3 Maximum Likelihood Estimation 152
5.3.4 Performance Bounds: Cramer-Rao Lower Bound 154
5.4 Summary 158
6 Power Spectrum Estimation 164
6.1 Introduction 164
6.2 PSD Estimation of a Stationary Discrete-Time Signal 168
6.2.1 Correlogram Method 168
6.2.2 Periodogram Method 170
6.2.3 Performance of the Periodogram PSD Estimate 172
6.3 Blackman-Tukey Estimator of the Power Spectrum 177
6.4 Other PSD Estimators Based on Modified Periodograms 181
6.4.1 Bartlett PSD Estimator 181
6.4.2 Welch PSD Estimator 183
6.5 PSD Estimation of Nonstationary Discrete-Time Signals 186
6.5.1 Temporally Windowed Observations 188
6.5.2 Temporal and Spectral Smoothing of PSD Estimates of Nonstationary
Discrete-Time Signals 189
6.5.3 DFT-Based PSD Computation 191
6.6 Spectral Correlation of Cyclostationary Signals 192
6.6.1 Spectral Correlation and Spectral Autocoherence 196
6.6.2 Time-Averaged Spectral Correlation 197
6.6.3 Estimation of Spectral Correlation 198
6.7 Summary 200
7 Markov Decision Processes 207
7.1 Introduction 207
7.2 Markov Decission Processes 209
7.3 Finite-Horizon MDPs 212
7.3.1 Definitions 212
7.3.2 Optimal Policies for MDPs 216
7.4 Infinite-Horizon MDPs 222
7.4.1 Stationary Optimal Policies for Infinite-Horizon MDPs 224
7.4.2 Bellman-Optimality Equations 227
7.5 Partially Observable Markov Decision Processes 232
7.5.1 Definitions 233
7.5.2 Policy Evaluation for a Finite-Horizon POMDP 238
7.5.3 Optimality Equations for a Finite-Horizon POMDP 241
7.5.4 Optimal Policy Computation for a Finite-Horizon POMDP 242
7.5.5 Infinite-Horizon POMDPs 257
7.6 Summary 259
8 Bayesian Nonparametric Classification 269
8.1 Introduction 269
8.2 K-Means Classification Algorithm 274
8.3 X-Means Classification Algorithm 276
8.4 Dirichlet Process Mixture Model 278
8.4.1 Dirichlet Process 278
8.4.2 Construction of the Dirichlet Process 279
8.4.3 DPMM 282
8.5 Bayesian Nonparametric Classification Based on the DPMM and the Gibbs
Sampling 283
8.5.1 DPMM-Based Classification of Scalar Observations 287
8.5.2 DPMM-Based Classification of Multidimensional Gaussian Observations
298
8.5.3 DPMM-Based Classification of Possibly Non-Gaussian Multidimensional
Observations 308
8.6 Summary 315
Part III signal processing in cognitive radios 321
9 Wideband Spectrum Sensing 323
9.1 Introduction 323
9.2 Wideband Spectrum Sensing Problem 325
9.3 Wideband Spectrum Scanning Problem 326
9.4 Spectrum Segmentation and Subbanding 328
9.5 Wideband Spectrum Sensing Receiver 330
9.5.1 Homodyne Receiver Configuration 332
9.5.2 Super Heterodyne Digital Receiver Configuration 334
9.5.3 A/D Conversion and the Discrete-Time Received Signal Model 335
9.6 Subband Selection Problem in Wideband Spectrum Sensing 336
9.6.1 Subband Dynamics 338
9.6.2 A POMDP Model for Subband Selection 340
9.6.3 An Optimal Subband Selection Policy for Spectrum Sensing 347
9.6.4 A Reduced-Complexity Optimal Sensing Decision-Making Algorithm with
Independent Channels 350
9.6.5 A Reduced Complexity Optimal Sensing Decision-Making Algorithm with
Independent Subbands 354
9.6.6 Optimal Myopic Sensing Decision Policies 354
9.7 A Reduced Complexity Optimal Subband Selection Framework with an
Alternative Reward Function 355
9.7.1 A New Model for Subband Dynamics 357
9.7.2 A Simplified Reward Function and a Reduced-Complexity Optimal Policy
359
9.7.3 A Reduced Complexity Optimal Policy for Independent Subbands 362
9.7.4 Optimal Myopic Policies with Reduced Dimensional Subband State
Vectors 363
9.8 Machine-Learning Aided Subband Selection Policies 364
9.8.1 Q-Learning 365
9.8.2 Q-Learning in a POMDP: A Q-Learning Algorithm for Subband Selection
368
9.9 Summary 372
10 Spectral Activity Detection in Wideband Cognitive Radios 377
10.1 Introduction 377
10.2 Optimal Wideband Spectral Activity Detection 379
10.3 Wideband Spectral Activity Detection 386
10.4 Wavelet Transform-Based Wideband Spectral Activity Detection 392
10.4.1 Wavelet Transform 394
10.4.2 Edge Detection with Wavelet Transform 395
10.4.3 Spectral Activity Detection Based on Edge Detection 397
10.5 Wideband Spectral Activity Detection in Non-Gaussian Noise 398
10.5.1 Arbitrary but Known Noise Distribution 399
10.5.2 Robust Spectral Activity Detection 406
10.6 Wideband Spectral Activity Detection with Compressive Sampling 413
10.6.1 Compressive Sampling 415
10.6.2 Compressive Sensing of Wideband Spectrum 419
10.7 Summary 421
11 Signal Classification in Wideband Cognitive Radios 429
11.1 Introduction 429
11.2 Signal Classification Problem in a Wideband Cognitive Radio 431
11.3 Feature Extraction for Signal Classification 435
11.3.1 Carrier/Center Frequency 435
11.3.2 Cyclostationary Features 436
11.3.3 Modulation Type and Order Features 441
11.4 A Signal Classification Architecture for a Wideband Cognitive Radio
445
11.5 Bayesian Nonparametric Signal Classification 447
11.6 Sequential Bayesian Nonparametric Signal Classification 462
11.7 Summary 469
12 Primary Signal Detection in DSA Cognitive Networks 472
12.1 Introduction 472
12.2 Spectrum Sensing Problem in Dynamic Spectrum Sharing CR Networks 475
12.3 Autonomous Spectrum Sensing for Dynamic Spectrum Sharing 479
12.3.1 Secondary User Sensing Observations 480
12.3.2 Channel-State (Idle/Busy) Decisions 481
12.4 Limitations of Autonomous Spectrum Sensing 489
12.5 Cooperative Spectrum Sensing for Dynamic Spectrum Sharing 492
12.6 Cooperative Channel-State Detection 495
12.6.1 Local Processing and Sensing Reports from Secondary Users 498
12.6.2 Final Channel-State Decisions at the SSDC: Decision Fusion 502
12.7 Summary 516
13 Spectrum Decision-Making in DSA Cognitive Networks 519
13.1 Introduction 519
13.2 Primary Channel Dynamic Model 520
13.3 Sensing Decisions in DSS Networks with Autonomous Cognitive Radios 522
13.3.1 Optimal Sensing Policy Determination 525
13.3.2 Optimal Myopic Sensing Policy Determination 530
13.4 Sensing Decisions in Cooperative DSS Networks 533
13.4.1 Optimal SSDC Decisions for Independent Channel Dynamics 537
13.4.2 Optimal Myopic Sensing Decisions at the SSDC with Independent
Channel Dynamics 541
13.5 Summary 550
14 Dynamic Spectrum Leasing in Cognitive Radio Networks 553
14.1 Introduction 553
14.2 DSL with Direct Rewards to Primary Users 555
14.2.1 Interference at the Primary Receiver 560
14.2.2 A Game Model for Dynamic Spectrum Leasing 565
14.2.3 Nash Equilibria in Noncooperative Games 570
14.2.4 Existence of a Nash Equilibrium in the DSL Game 573
14.3 DSL Based on Asymmetric Cooperation with Primary Users 587
14.3.1 A Primary-Secondary Coexistence Model 588
14.3.2 Asymmetric Cooperative Communications-Based DSL between Primary
Users and a Centralized Secondary Network 591
14.3.3 Asymmetric Cooperative Communications-Based DSL between Primary
Users and Autonomous Cognitive Secondary Users 604
14.4 Summary 609
15 Cooperative Cognitive Communications 613
15.1 Introduction 613
15.2 Cooperative Spectrum Sensing 619
15.3 Cooperative Spectrum Sensing and Channel-Access Decisions 621
15.4 Cooperative Communications Strategies in Cognitive Radio Networks 624
15.5 Asymmetric Cooperative Relaying in DSA Cognitive Radios 627
15.5.1 Secondary User Optimal Power Allocation for Asymmetric Cooperative
Relaying 629
15.5.2 Centralized Assignment of Cognitive Radios for Cooperation with
Primary Users: An Ideal Approach 635
15.5.3 Centralized Assignment of Cognitive Radios for Cooperation with
Primary Users: A Realistic Approach 640
15.6 Summary 644
16 Machine Learning in Cognitive Radios 647
16.1 Introduction 647
16.2 Artificial Neural Networks 650
16.2.1 Learning Algorithms for LTUs 651
16.2.2 Layered Neural Networks 655
16.2.3 Learning in Layered Feed-Forward Networks: Back-Propagation
Algorithm 656
16.2.4 Neural Networks in Cognitive Radios 662
16.3 Support Vector Machines 664
16.3.1 Statistical Learning Theory 665
16.3.2 Structural Risk Minimization with Support Vector Machines 669
16.3.3 Linear Support Vector Machines 670
16.3.4 Nonlinear Support Vector Machines 674
16.3.5 Kernel Function Implementation of Support Vector Machines 677
16.3.6 SVMs in Cognitive Radios 679
16.4 Reinforcement Learning 681
16.4.1 Temporal Difference Learning 683
16.4.2 Q-Learning in a POMDP: Replicated Q-Learning 684
16.4.3 Reinforcement Learning in Cognitive Radios 686
16.5 Multiagent Learning 688
16.5.1 Game-Theoretic Multiagent Learning 691
16.5.2 Cooperative Multiagent Learning 694
16.5.3 Multiagent Learning in Cognitive Radio Networks 696
16.6 Summary 698
Appendix A Nyquist Sampling Theorem 704
Appendix B A Collection of Useful Probability Distributions 711
B.1 Univariate Distributions 711
B.2 Multivariate Distributions 713
Appendix C Conjugate Priors 716
References 721
Index 740
Part I Introduction to Cognitive Radios 1
1 Introduction 3
1.1 Introduction 3
1.2 Signal Processing and Cognitive Radios 4
1.3 Software-Defined Radios 6
1.3.1 Software-Defined Radio Platforms 14
1.3.2 Software-Defined Radio Systems 15
1.4 From Software-Defined Radios to Cognitive Radios 19
1.4.1 The Spectrum Scarcity Problem 19
1.4.2 Emergence of CRs 21
1.5 What this Book is About 22
1.6 Summary 26
2 The Cognitive Radio 27
2.1 Introduction 27
2.2 A Functional Model of a Cognitive Radio 30
2.2.1 Spectrum Knowledge Acquisition (Spectrum Awareness) 30
2.2.2 Communications Decision-Making 33
2.2.3 Learning in Cognitive Radios 33
2.3 The Cognitive Radio Architecture 35
2.3.1 Spectrum Sensing Region of a Cognitive Engine 36
2.3.2 Radio Reconfiguration Region of a Cognitive Engine 36
2.3.3 Learning Region of a Cognitive Engine 37
2.3.4 Memory Region of a Cognitive Engine 37
2.4 The Ideal Cognitive Radio 38
2.5 Signal Processing Challenges in Cognitive Radios 39
2.6 Summary 40
3 Cognitive Radios and Dynamic Spectrum Sharing 42
3.1 Introduction 42
3.2 Interference and Spectrum Opportunities 46
3.3 Dynamic Spectrum Access 50
3.4 Dynamic Spectrum Leasing 54
3.5 Challenges in DSS Cognitive Radios 55
3.6 Cognitive Radios and Future of Wireless Communications 60
3.7 Summary 61
Part II theoretical foundations 65
4 Introduction to Detection Theory 67
4.1 Introduction 67
4.2 Optimality Criteria: Bayesian versus Non-Bayesian 71
4.2.1 The Bayesian Approach 72
4.2.2 A Non-Bayesian Approach: Neyman-Pearson Optimality Criterion 73
4.3 Parametric Signal Detection Theory 75
4.3.1 Bayesian Optimal Detection 76
4.3.2 Neyman-Pearson Optimal Detection 82
4.3.3 Another Non-Bayesian Alternative: The Generalized Likelihood Ratio
Test 99
4.3.4 Parametric Signal Detection in Additive Noise 103
4.4 Nonparametric Signal Detection Theory 122
4.4.1 Signal Detection in Additive Zero-Median Noise: The Sign Test 124
4.4.2 Signal Detection in Additive Symmetric Noise: The Rank Test 125
4.4.3 Signal Detection in Additive Zero Median, Zero Mean, Finite-Variance
Noise: The t-Test 126
4.5 Summary 127
5 Introduction to Estimation Theory 132
5.1 Introduction 132
5.2 Random Parameter Estimation: Bayesian Estimation 134
5.2.1 Minimum Mean-Squared Error Estimation 134
5.2.2 MMSE Estimation of Vector Parameters 135
5.2.3 Linear Minimum Mean-Squared Error Estimation 138
5.2.4 Maximum A Posteriori Probability Estimation 139
5.3 Nonrandom Parameter Estimation 140
5.3.1 Theory of Minimum Variance Unbiased Estimation 142
5.3.2 Best Linear Unbiased Estimator 147
5.3.3 Maximum Likelihood Estimation 152
5.3.4 Performance Bounds: Cramer-Rao Lower Bound 154
5.4 Summary 158
6 Power Spectrum Estimation 164
6.1 Introduction 164
6.2 PSD Estimation of a Stationary Discrete-Time Signal 168
6.2.1 Correlogram Method 168
6.2.2 Periodogram Method 170
6.2.3 Performance of the Periodogram PSD Estimate 172
6.3 Blackman-Tukey Estimator of the Power Spectrum 177
6.4 Other PSD Estimators Based on Modified Periodograms 181
6.4.1 Bartlett PSD Estimator 181
6.4.2 Welch PSD Estimator 183
6.5 PSD Estimation of Nonstationary Discrete-Time Signals 186
6.5.1 Temporally Windowed Observations 188
6.5.2 Temporal and Spectral Smoothing of PSD Estimates of Nonstationary
Discrete-Time Signals 189
6.5.3 DFT-Based PSD Computation 191
6.6 Spectral Correlation of Cyclostationary Signals 192
6.6.1 Spectral Correlation and Spectral Autocoherence 196
6.6.2 Time-Averaged Spectral Correlation 197
6.6.3 Estimation of Spectral Correlation 198
6.7 Summary 200
7 Markov Decision Processes 207
7.1 Introduction 207
7.2 Markov Decission Processes 209
7.3 Finite-Horizon MDPs 212
7.3.1 Definitions 212
7.3.2 Optimal Policies for MDPs 216
7.4 Infinite-Horizon MDPs 222
7.4.1 Stationary Optimal Policies for Infinite-Horizon MDPs 224
7.4.2 Bellman-Optimality Equations 227
7.5 Partially Observable Markov Decision Processes 232
7.5.1 Definitions 233
7.5.2 Policy Evaluation for a Finite-Horizon POMDP 238
7.5.3 Optimality Equations for a Finite-Horizon POMDP 241
7.5.4 Optimal Policy Computation for a Finite-Horizon POMDP 242
7.5.5 Infinite-Horizon POMDPs 257
7.6 Summary 259
8 Bayesian Nonparametric Classification 269
8.1 Introduction 269
8.2 K-Means Classification Algorithm 274
8.3 X-Means Classification Algorithm 276
8.4 Dirichlet Process Mixture Model 278
8.4.1 Dirichlet Process 278
8.4.2 Construction of the Dirichlet Process 279
8.4.3 DPMM 282
8.5 Bayesian Nonparametric Classification Based on the DPMM and the Gibbs
Sampling 283
8.5.1 DPMM-Based Classification of Scalar Observations 287
8.5.2 DPMM-Based Classification of Multidimensional Gaussian Observations
298
8.5.3 DPMM-Based Classification of Possibly Non-Gaussian Multidimensional
Observations 308
8.6 Summary 315
Part III signal processing in cognitive radios 321
9 Wideband Spectrum Sensing 323
9.1 Introduction 323
9.2 Wideband Spectrum Sensing Problem 325
9.3 Wideband Spectrum Scanning Problem 326
9.4 Spectrum Segmentation and Subbanding 328
9.5 Wideband Spectrum Sensing Receiver 330
9.5.1 Homodyne Receiver Configuration 332
9.5.2 Super Heterodyne Digital Receiver Configuration 334
9.5.3 A/D Conversion and the Discrete-Time Received Signal Model 335
9.6 Subband Selection Problem in Wideband Spectrum Sensing 336
9.6.1 Subband Dynamics 338
9.6.2 A POMDP Model for Subband Selection 340
9.6.3 An Optimal Subband Selection Policy for Spectrum Sensing 347
9.6.4 A Reduced-Complexity Optimal Sensing Decision-Making Algorithm with
Independent Channels 350
9.6.5 A Reduced Complexity Optimal Sensing Decision-Making Algorithm with
Independent Subbands 354
9.6.6 Optimal Myopic Sensing Decision Policies 354
9.7 A Reduced Complexity Optimal Subband Selection Framework with an
Alternative Reward Function 355
9.7.1 A New Model for Subband Dynamics 357
9.7.2 A Simplified Reward Function and a Reduced-Complexity Optimal Policy
359
9.7.3 A Reduced Complexity Optimal Policy for Independent Subbands 362
9.7.4 Optimal Myopic Policies with Reduced Dimensional Subband State
Vectors 363
9.8 Machine-Learning Aided Subband Selection Policies 364
9.8.1 Q-Learning 365
9.8.2 Q-Learning in a POMDP: A Q-Learning Algorithm for Subband Selection
368
9.9 Summary 372
10 Spectral Activity Detection in Wideband Cognitive Radios 377
10.1 Introduction 377
10.2 Optimal Wideband Spectral Activity Detection 379
10.3 Wideband Spectral Activity Detection 386
10.4 Wavelet Transform-Based Wideband Spectral Activity Detection 392
10.4.1 Wavelet Transform 394
10.4.2 Edge Detection with Wavelet Transform 395
10.4.3 Spectral Activity Detection Based on Edge Detection 397
10.5 Wideband Spectral Activity Detection in Non-Gaussian Noise 398
10.5.1 Arbitrary but Known Noise Distribution 399
10.5.2 Robust Spectral Activity Detection 406
10.6 Wideband Spectral Activity Detection with Compressive Sampling 413
10.6.1 Compressive Sampling 415
10.6.2 Compressive Sensing of Wideband Spectrum 419
10.7 Summary 421
11 Signal Classification in Wideband Cognitive Radios 429
11.1 Introduction 429
11.2 Signal Classification Problem in a Wideband Cognitive Radio 431
11.3 Feature Extraction for Signal Classification 435
11.3.1 Carrier/Center Frequency 435
11.3.2 Cyclostationary Features 436
11.3.3 Modulation Type and Order Features 441
11.4 A Signal Classification Architecture for a Wideband Cognitive Radio
445
11.5 Bayesian Nonparametric Signal Classification 447
11.6 Sequential Bayesian Nonparametric Signal Classification 462
11.7 Summary 469
12 Primary Signal Detection in DSA Cognitive Networks 472
12.1 Introduction 472
12.2 Spectrum Sensing Problem in Dynamic Spectrum Sharing CR Networks 475
12.3 Autonomous Spectrum Sensing for Dynamic Spectrum Sharing 479
12.3.1 Secondary User Sensing Observations 480
12.3.2 Channel-State (Idle/Busy) Decisions 481
12.4 Limitations of Autonomous Spectrum Sensing 489
12.5 Cooperative Spectrum Sensing for Dynamic Spectrum Sharing 492
12.6 Cooperative Channel-State Detection 495
12.6.1 Local Processing and Sensing Reports from Secondary Users 498
12.6.2 Final Channel-State Decisions at the SSDC: Decision Fusion 502
12.7 Summary 516
13 Spectrum Decision-Making in DSA Cognitive Networks 519
13.1 Introduction 519
13.2 Primary Channel Dynamic Model 520
13.3 Sensing Decisions in DSS Networks with Autonomous Cognitive Radios 522
13.3.1 Optimal Sensing Policy Determination 525
13.3.2 Optimal Myopic Sensing Policy Determination 530
13.4 Sensing Decisions in Cooperative DSS Networks 533
13.4.1 Optimal SSDC Decisions for Independent Channel Dynamics 537
13.4.2 Optimal Myopic Sensing Decisions at the SSDC with Independent
Channel Dynamics 541
13.5 Summary 550
14 Dynamic Spectrum Leasing in Cognitive Radio Networks 553
14.1 Introduction 553
14.2 DSL with Direct Rewards to Primary Users 555
14.2.1 Interference at the Primary Receiver 560
14.2.2 A Game Model for Dynamic Spectrum Leasing 565
14.2.3 Nash Equilibria in Noncooperative Games 570
14.2.4 Existence of a Nash Equilibrium in the DSL Game 573
14.3 DSL Based on Asymmetric Cooperation with Primary Users 587
14.3.1 A Primary-Secondary Coexistence Model 588
14.3.2 Asymmetric Cooperative Communications-Based DSL between Primary
Users and a Centralized Secondary Network 591
14.3.3 Asymmetric Cooperative Communications-Based DSL between Primary
Users and Autonomous Cognitive Secondary Users 604
14.4 Summary 609
15 Cooperative Cognitive Communications 613
15.1 Introduction 613
15.2 Cooperative Spectrum Sensing 619
15.3 Cooperative Spectrum Sensing and Channel-Access Decisions 621
15.4 Cooperative Communications Strategies in Cognitive Radio Networks 624
15.5 Asymmetric Cooperative Relaying in DSA Cognitive Radios 627
15.5.1 Secondary User Optimal Power Allocation for Asymmetric Cooperative
Relaying 629
15.5.2 Centralized Assignment of Cognitive Radios for Cooperation with
Primary Users: An Ideal Approach 635
15.5.3 Centralized Assignment of Cognitive Radios for Cooperation with
Primary Users: A Realistic Approach 640
15.6 Summary 644
16 Machine Learning in Cognitive Radios 647
16.1 Introduction 647
16.2 Artificial Neural Networks 650
16.2.1 Learning Algorithms for LTUs 651
16.2.2 Layered Neural Networks 655
16.2.3 Learning in Layered Feed-Forward Networks: Back-Propagation
Algorithm 656
16.2.4 Neural Networks in Cognitive Radios 662
16.3 Support Vector Machines 664
16.3.1 Statistical Learning Theory 665
16.3.2 Structural Risk Minimization with Support Vector Machines 669
16.3.3 Linear Support Vector Machines 670
16.3.4 Nonlinear Support Vector Machines 674
16.3.5 Kernel Function Implementation of Support Vector Machines 677
16.3.6 SVMs in Cognitive Radios 679
16.4 Reinforcement Learning 681
16.4.1 Temporal Difference Learning 683
16.4.2 Q-Learning in a POMDP: Replicated Q-Learning 684
16.4.3 Reinforcement Learning in Cognitive Radios 686
16.5 Multiagent Learning 688
16.5.1 Game-Theoretic Multiagent Learning 691
16.5.2 Cooperative Multiagent Learning 694
16.5.3 Multiagent Learning in Cognitive Radio Networks 696
16.6 Summary 698
Appendix A Nyquist Sampling Theorem 704
Appendix B A Collection of Useful Probability Distributions 711
B.1 Univariate Distributions 711
B.2 Multivariate Distributions 713
Appendix C Conjugate Priors 716
References 721
Index 740
Preface xv
Part I Introduction to Cognitive Radios 1
1 Introduction 3
1.1 Introduction 3
1.2 Signal Processing and Cognitive Radios 4
1.3 Software-Defined Radios 6
1.3.1 Software-Defined Radio Platforms 14
1.3.2 Software-Defined Radio Systems 15
1.4 From Software-Defined Radios to Cognitive Radios 19
1.4.1 The Spectrum Scarcity Problem 19
1.4.2 Emergence of CRs 21
1.5 What this Book is About 22
1.6 Summary 26
2 The Cognitive Radio 27
2.1 Introduction 27
2.2 A Functional Model of a Cognitive Radio 30
2.2.1 Spectrum Knowledge Acquisition (Spectrum Awareness) 30
2.2.2 Communications Decision-Making 33
2.2.3 Learning in Cognitive Radios 33
2.3 The Cognitive Radio Architecture 35
2.3.1 Spectrum Sensing Region of a Cognitive Engine 36
2.3.2 Radio Reconfiguration Region of a Cognitive Engine 36
2.3.3 Learning Region of a Cognitive Engine 37
2.3.4 Memory Region of a Cognitive Engine 37
2.4 The Ideal Cognitive Radio 38
2.5 Signal Processing Challenges in Cognitive Radios 39
2.6 Summary 40
3 Cognitive Radios and Dynamic Spectrum Sharing 42
3.1 Introduction 42
3.2 Interference and Spectrum Opportunities 46
3.3 Dynamic Spectrum Access 50
3.4 Dynamic Spectrum Leasing 54
3.5 Challenges in DSS Cognitive Radios 55
3.6 Cognitive Radios and Future of Wireless Communications 60
3.7 Summary 61
Part II theoretical foundations 65
4 Introduction to Detection Theory 67
4.1 Introduction 67
4.2 Optimality Criteria: Bayesian versus Non-Bayesian 71
4.2.1 The Bayesian Approach 72
4.2.2 A Non-Bayesian Approach: Neyman-Pearson Optimality Criterion 73
4.3 Parametric Signal Detection Theory 75
4.3.1 Bayesian Optimal Detection 76
4.3.2 Neyman-Pearson Optimal Detection 82
4.3.3 Another Non-Bayesian Alternative: The Generalized Likelihood Ratio
Test 99
4.3.4 Parametric Signal Detection in Additive Noise 103
4.4 Nonparametric Signal Detection Theory 122
4.4.1 Signal Detection in Additive Zero-Median Noise: The Sign Test 124
4.4.2 Signal Detection in Additive Symmetric Noise: The Rank Test 125
4.4.3 Signal Detection in Additive Zero Median, Zero Mean, Finite-Variance
Noise: The t-Test 126
4.5 Summary 127
5 Introduction to Estimation Theory 132
5.1 Introduction 132
5.2 Random Parameter Estimation: Bayesian Estimation 134
5.2.1 Minimum Mean-Squared Error Estimation 134
5.2.2 MMSE Estimation of Vector Parameters 135
5.2.3 Linear Minimum Mean-Squared Error Estimation 138
5.2.4 Maximum A Posteriori Probability Estimation 139
5.3 Nonrandom Parameter Estimation 140
5.3.1 Theory of Minimum Variance Unbiased Estimation 142
5.3.2 Best Linear Unbiased Estimator 147
5.3.3 Maximum Likelihood Estimation 152
5.3.4 Performance Bounds: Cramer-Rao Lower Bound 154
5.4 Summary 158
6 Power Spectrum Estimation 164
6.1 Introduction 164
6.2 PSD Estimation of a Stationary Discrete-Time Signal 168
6.2.1 Correlogram Method 168
6.2.2 Periodogram Method 170
6.2.3 Performance of the Periodogram PSD Estimate 172
6.3 Blackman-Tukey Estimator of the Power Spectrum 177
6.4 Other PSD Estimators Based on Modified Periodograms 181
6.4.1 Bartlett PSD Estimator 181
6.4.2 Welch PSD Estimator 183
6.5 PSD Estimation of Nonstationary Discrete-Time Signals 186
6.5.1 Temporally Windowed Observations 188
6.5.2 Temporal and Spectral Smoothing of PSD Estimates of Nonstationary
Discrete-Time Signals 189
6.5.3 DFT-Based PSD Computation 191
6.6 Spectral Correlation of Cyclostationary Signals 192
6.6.1 Spectral Correlation and Spectral Autocoherence 196
6.6.2 Time-Averaged Spectral Correlation 197
6.6.3 Estimation of Spectral Correlation 198
6.7 Summary 200
7 Markov Decision Processes 207
7.1 Introduction 207
7.2 Markov Decission Processes 209
7.3 Finite-Horizon MDPs 212
7.3.1 Definitions 212
7.3.2 Optimal Policies for MDPs 216
7.4 Infinite-Horizon MDPs 222
7.4.1 Stationary Optimal Policies for Infinite-Horizon MDPs 224
7.4.2 Bellman-Optimality Equations 227
7.5 Partially Observable Markov Decision Processes 232
7.5.1 Definitions 233
7.5.2 Policy Evaluation for a Finite-Horizon POMDP 238
7.5.3 Optimality Equations for a Finite-Horizon POMDP 241
7.5.4 Optimal Policy Computation for a Finite-Horizon POMDP 242
7.5.5 Infinite-Horizon POMDPs 257
7.6 Summary 259
8 Bayesian Nonparametric Classification 269
8.1 Introduction 269
8.2 K-Means Classification Algorithm 274
8.3 X-Means Classification Algorithm 276
8.4 Dirichlet Process Mixture Model 278
8.4.1 Dirichlet Process 278
8.4.2 Construction of the Dirichlet Process 279
8.4.3 DPMM 282
8.5 Bayesian Nonparametric Classification Based on the DPMM and the Gibbs
Sampling 283
8.5.1 DPMM-Based Classification of Scalar Observations 287
8.5.2 DPMM-Based Classification of Multidimensional Gaussian Observations
298
8.5.3 DPMM-Based Classification of Possibly Non-Gaussian Multidimensional
Observations 308
8.6 Summary 315
Part III signal processing in cognitive radios 321
9 Wideband Spectrum Sensing 323
9.1 Introduction 323
9.2 Wideband Spectrum Sensing Problem 325
9.3 Wideband Spectrum Scanning Problem 326
9.4 Spectrum Segmentation and Subbanding 328
9.5 Wideband Spectrum Sensing Receiver 330
9.5.1 Homodyne Receiver Configuration 332
9.5.2 Super Heterodyne Digital Receiver Configuration 334
9.5.3 A/D Conversion and the Discrete-Time Received Signal Model 335
9.6 Subband Selection Problem in Wideband Spectrum Sensing 336
9.6.1 Subband Dynamics 338
9.6.2 A POMDP Model for Subband Selection 340
9.6.3 An Optimal Subband Selection Policy for Spectrum Sensing 347
9.6.4 A Reduced-Complexity Optimal Sensing Decision-Making Algorithm with
Independent Channels 350
9.6.5 A Reduced Complexity Optimal Sensing Decision-Making Algorithm with
Independent Subbands 354
9.6.6 Optimal Myopic Sensing Decision Policies 354
9.7 A Reduced Complexity Optimal Subband Selection Framework with an
Alternative Reward Function 355
9.7.1 A New Model for Subband Dynamics 357
9.7.2 A Simplified Reward Function and a Reduced-Complexity Optimal Policy
359
9.7.3 A Reduced Complexity Optimal Policy for Independent Subbands 362
9.7.4 Optimal Myopic Policies with Reduced Dimensional Subband State
Vectors 363
9.8 Machine-Learning Aided Subband Selection Policies 364
9.8.1 Q-Learning 365
9.8.2 Q-Learning in a POMDP: A Q-Learning Algorithm for Subband Selection
368
9.9 Summary 372
10 Spectral Activity Detection in Wideband Cognitive Radios 377
10.1 Introduction 377
10.2 Optimal Wideband Spectral Activity Detection 379
10.3 Wideband Spectral Activity Detection 386
10.4 Wavelet Transform-Based Wideband Spectral Activity Detection 392
10.4.1 Wavelet Transform 394
10.4.2 Edge Detection with Wavelet Transform 395
10.4.3 Spectral Activity Detection Based on Edge Detection 397
10.5 Wideband Spectral Activity Detection in Non-Gaussian Noise 398
10.5.1 Arbitrary but Known Noise Distribution 399
10.5.2 Robust Spectral Activity Detection 406
10.6 Wideband Spectral Activity Detection with Compressive Sampling 413
10.6.1 Compressive Sampling 415
10.6.2 Compressive Sensing of Wideband Spectrum 419
10.7 Summary 421
11 Signal Classification in Wideband Cognitive Radios 429
11.1 Introduction 429
11.2 Signal Classification Problem in a Wideband Cognitive Radio 431
11.3 Feature Extraction for Signal Classification 435
11.3.1 Carrier/Center Frequency 435
11.3.2 Cyclostationary Features 436
11.3.3 Modulation Type and Order Features 441
11.4 A Signal Classification Architecture for a Wideband Cognitive Radio
445
11.5 Bayesian Nonparametric Signal Classification 447
11.6 Sequential Bayesian Nonparametric Signal Classification 462
11.7 Summary 469
12 Primary Signal Detection in DSA Cognitive Networks 472
12.1 Introduction 472
12.2 Spectrum Sensing Problem in Dynamic Spectrum Sharing CR Networks 475
12.3 Autonomous Spectrum Sensing for Dynamic Spectrum Sharing 479
12.3.1 Secondary User Sensing Observations 480
12.3.2 Channel-State (Idle/Busy) Decisions 481
12.4 Limitations of Autonomous Spectrum Sensing 489
12.5 Cooperative Spectrum Sensing for Dynamic Spectrum Sharing 492
12.6 Cooperative Channel-State Detection 495
12.6.1 Local Processing and Sensing Reports from Secondary Users 498
12.6.2 Final Channel-State Decisions at the SSDC: Decision Fusion 502
12.7 Summary 516
13 Spectrum Decision-Making in DSA Cognitive Networks 519
13.1 Introduction 519
13.2 Primary Channel Dynamic Model 520
13.3 Sensing Decisions in DSS Networks with Autonomous Cognitive Radios 522
13.3.1 Optimal Sensing Policy Determination 525
13.3.2 Optimal Myopic Sensing Policy Determination 530
13.4 Sensing Decisions in Cooperative DSS Networks 533
13.4.1 Optimal SSDC Decisions for Independent Channel Dynamics 537
13.4.2 Optimal Myopic Sensing Decisions at the SSDC with Independent
Channel Dynamics 541
13.5 Summary 550
14 Dynamic Spectrum Leasing in Cognitive Radio Networks 553
14.1 Introduction 553
14.2 DSL with Direct Rewards to Primary Users 555
14.2.1 Interference at the Primary Receiver 560
14.2.2 A Game Model for Dynamic Spectrum Leasing 565
14.2.3 Nash Equilibria in Noncooperative Games 570
14.2.4 Existence of a Nash Equilibrium in the DSL Game 573
14.3 DSL Based on Asymmetric Cooperation with Primary Users 587
14.3.1 A Primary-Secondary Coexistence Model 588
14.3.2 Asymmetric Cooperative Communications-Based DSL between Primary
Users and a Centralized Secondary Network 591
14.3.3 Asymmetric Cooperative Communications-Based DSL between Primary
Users and Autonomous Cognitive Secondary Users 604
14.4 Summary 609
15 Cooperative Cognitive Communications 613
15.1 Introduction 613
15.2 Cooperative Spectrum Sensing 619
15.3 Cooperative Spectrum Sensing and Channel-Access Decisions 621
15.4 Cooperative Communications Strategies in Cognitive Radio Networks 624
15.5 Asymmetric Cooperative Relaying in DSA Cognitive Radios 627
15.5.1 Secondary User Optimal Power Allocation for Asymmetric Cooperative
Relaying 629
15.5.2 Centralized Assignment of Cognitive Radios for Cooperation with
Primary Users: An Ideal Approach 635
15.5.3 Centralized Assignment of Cognitive Radios for Cooperation with
Primary Users: A Realistic Approach 640
15.6 Summary 644
16 Machine Learning in Cognitive Radios 647
16.1 Introduction 647
16.2 Artificial Neural Networks 650
16.2.1 Learning Algorithms for LTUs 651
16.2.2 Layered Neural Networks 655
16.2.3 Learning in Layered Feed-Forward Networks: Back-Propagation
Algorithm 656
16.2.4 Neural Networks in Cognitive Radios 662
16.3 Support Vector Machines 664
16.3.1 Statistical Learning Theory 665
16.3.2 Structural Risk Minimization with Support Vector Machines 669
16.3.3 Linear Support Vector Machines 670
16.3.4 Nonlinear Support Vector Machines 674
16.3.5 Kernel Function Implementation of Support Vector Machines 677
16.3.6 SVMs in Cognitive Radios 679
16.4 Reinforcement Learning 681
16.4.1 Temporal Difference Learning 683
16.4.2 Q-Learning in a POMDP: Replicated Q-Learning 684
16.4.3 Reinforcement Learning in Cognitive Radios 686
16.5 Multiagent Learning 688
16.5.1 Game-Theoretic Multiagent Learning 691
16.5.2 Cooperative Multiagent Learning 694
16.5.3 Multiagent Learning in Cognitive Radio Networks 696
16.6 Summary 698
Appendix A Nyquist Sampling Theorem 704
Appendix B A Collection of Useful Probability Distributions 711
B.1 Univariate Distributions 711
B.2 Multivariate Distributions 713
Appendix C Conjugate Priors 716
References 721
Index 740
Part I Introduction to Cognitive Radios 1
1 Introduction 3
1.1 Introduction 3
1.2 Signal Processing and Cognitive Radios 4
1.3 Software-Defined Radios 6
1.3.1 Software-Defined Radio Platforms 14
1.3.2 Software-Defined Radio Systems 15
1.4 From Software-Defined Radios to Cognitive Radios 19
1.4.1 The Spectrum Scarcity Problem 19
1.4.2 Emergence of CRs 21
1.5 What this Book is About 22
1.6 Summary 26
2 The Cognitive Radio 27
2.1 Introduction 27
2.2 A Functional Model of a Cognitive Radio 30
2.2.1 Spectrum Knowledge Acquisition (Spectrum Awareness) 30
2.2.2 Communications Decision-Making 33
2.2.3 Learning in Cognitive Radios 33
2.3 The Cognitive Radio Architecture 35
2.3.1 Spectrum Sensing Region of a Cognitive Engine 36
2.3.2 Radio Reconfiguration Region of a Cognitive Engine 36
2.3.3 Learning Region of a Cognitive Engine 37
2.3.4 Memory Region of a Cognitive Engine 37
2.4 The Ideal Cognitive Radio 38
2.5 Signal Processing Challenges in Cognitive Radios 39
2.6 Summary 40
3 Cognitive Radios and Dynamic Spectrum Sharing 42
3.1 Introduction 42
3.2 Interference and Spectrum Opportunities 46
3.3 Dynamic Spectrum Access 50
3.4 Dynamic Spectrum Leasing 54
3.5 Challenges in DSS Cognitive Radios 55
3.6 Cognitive Radios and Future of Wireless Communications 60
3.7 Summary 61
Part II theoretical foundations 65
4 Introduction to Detection Theory 67
4.1 Introduction 67
4.2 Optimality Criteria: Bayesian versus Non-Bayesian 71
4.2.1 The Bayesian Approach 72
4.2.2 A Non-Bayesian Approach: Neyman-Pearson Optimality Criterion 73
4.3 Parametric Signal Detection Theory 75
4.3.1 Bayesian Optimal Detection 76
4.3.2 Neyman-Pearson Optimal Detection 82
4.3.3 Another Non-Bayesian Alternative: The Generalized Likelihood Ratio
Test 99
4.3.4 Parametric Signal Detection in Additive Noise 103
4.4 Nonparametric Signal Detection Theory 122
4.4.1 Signal Detection in Additive Zero-Median Noise: The Sign Test 124
4.4.2 Signal Detection in Additive Symmetric Noise: The Rank Test 125
4.4.3 Signal Detection in Additive Zero Median, Zero Mean, Finite-Variance
Noise: The t-Test 126
4.5 Summary 127
5 Introduction to Estimation Theory 132
5.1 Introduction 132
5.2 Random Parameter Estimation: Bayesian Estimation 134
5.2.1 Minimum Mean-Squared Error Estimation 134
5.2.2 MMSE Estimation of Vector Parameters 135
5.2.3 Linear Minimum Mean-Squared Error Estimation 138
5.2.4 Maximum A Posteriori Probability Estimation 139
5.3 Nonrandom Parameter Estimation 140
5.3.1 Theory of Minimum Variance Unbiased Estimation 142
5.3.2 Best Linear Unbiased Estimator 147
5.3.3 Maximum Likelihood Estimation 152
5.3.4 Performance Bounds: Cramer-Rao Lower Bound 154
5.4 Summary 158
6 Power Spectrum Estimation 164
6.1 Introduction 164
6.2 PSD Estimation of a Stationary Discrete-Time Signal 168
6.2.1 Correlogram Method 168
6.2.2 Periodogram Method 170
6.2.3 Performance of the Periodogram PSD Estimate 172
6.3 Blackman-Tukey Estimator of the Power Spectrum 177
6.4 Other PSD Estimators Based on Modified Periodograms 181
6.4.1 Bartlett PSD Estimator 181
6.4.2 Welch PSD Estimator 183
6.5 PSD Estimation of Nonstationary Discrete-Time Signals 186
6.5.1 Temporally Windowed Observations 188
6.5.2 Temporal and Spectral Smoothing of PSD Estimates of Nonstationary
Discrete-Time Signals 189
6.5.3 DFT-Based PSD Computation 191
6.6 Spectral Correlation of Cyclostationary Signals 192
6.6.1 Spectral Correlation and Spectral Autocoherence 196
6.6.2 Time-Averaged Spectral Correlation 197
6.6.3 Estimation of Spectral Correlation 198
6.7 Summary 200
7 Markov Decision Processes 207
7.1 Introduction 207
7.2 Markov Decission Processes 209
7.3 Finite-Horizon MDPs 212
7.3.1 Definitions 212
7.3.2 Optimal Policies for MDPs 216
7.4 Infinite-Horizon MDPs 222
7.4.1 Stationary Optimal Policies for Infinite-Horizon MDPs 224
7.4.2 Bellman-Optimality Equations 227
7.5 Partially Observable Markov Decision Processes 232
7.5.1 Definitions 233
7.5.2 Policy Evaluation for a Finite-Horizon POMDP 238
7.5.3 Optimality Equations for a Finite-Horizon POMDP 241
7.5.4 Optimal Policy Computation for a Finite-Horizon POMDP 242
7.5.5 Infinite-Horizon POMDPs 257
7.6 Summary 259
8 Bayesian Nonparametric Classification 269
8.1 Introduction 269
8.2 K-Means Classification Algorithm 274
8.3 X-Means Classification Algorithm 276
8.4 Dirichlet Process Mixture Model 278
8.4.1 Dirichlet Process 278
8.4.2 Construction of the Dirichlet Process 279
8.4.3 DPMM 282
8.5 Bayesian Nonparametric Classification Based on the DPMM and the Gibbs
Sampling 283
8.5.1 DPMM-Based Classification of Scalar Observations 287
8.5.2 DPMM-Based Classification of Multidimensional Gaussian Observations
298
8.5.3 DPMM-Based Classification of Possibly Non-Gaussian Multidimensional
Observations 308
8.6 Summary 315
Part III signal processing in cognitive radios 321
9 Wideband Spectrum Sensing 323
9.1 Introduction 323
9.2 Wideband Spectrum Sensing Problem 325
9.3 Wideband Spectrum Scanning Problem 326
9.4 Spectrum Segmentation and Subbanding 328
9.5 Wideband Spectrum Sensing Receiver 330
9.5.1 Homodyne Receiver Configuration 332
9.5.2 Super Heterodyne Digital Receiver Configuration 334
9.5.3 A/D Conversion and the Discrete-Time Received Signal Model 335
9.6 Subband Selection Problem in Wideband Spectrum Sensing 336
9.6.1 Subband Dynamics 338
9.6.2 A POMDP Model for Subband Selection 340
9.6.3 An Optimal Subband Selection Policy for Spectrum Sensing 347
9.6.4 A Reduced-Complexity Optimal Sensing Decision-Making Algorithm with
Independent Channels 350
9.6.5 A Reduced Complexity Optimal Sensing Decision-Making Algorithm with
Independent Subbands 354
9.6.6 Optimal Myopic Sensing Decision Policies 354
9.7 A Reduced Complexity Optimal Subband Selection Framework with an
Alternative Reward Function 355
9.7.1 A New Model for Subband Dynamics 357
9.7.2 A Simplified Reward Function and a Reduced-Complexity Optimal Policy
359
9.7.3 A Reduced Complexity Optimal Policy for Independent Subbands 362
9.7.4 Optimal Myopic Policies with Reduced Dimensional Subband State
Vectors 363
9.8 Machine-Learning Aided Subband Selection Policies 364
9.8.1 Q-Learning 365
9.8.2 Q-Learning in a POMDP: A Q-Learning Algorithm for Subband Selection
368
9.9 Summary 372
10 Spectral Activity Detection in Wideband Cognitive Radios 377
10.1 Introduction 377
10.2 Optimal Wideband Spectral Activity Detection 379
10.3 Wideband Spectral Activity Detection 386
10.4 Wavelet Transform-Based Wideband Spectral Activity Detection 392
10.4.1 Wavelet Transform 394
10.4.2 Edge Detection with Wavelet Transform 395
10.4.3 Spectral Activity Detection Based on Edge Detection 397
10.5 Wideband Spectral Activity Detection in Non-Gaussian Noise 398
10.5.1 Arbitrary but Known Noise Distribution 399
10.5.2 Robust Spectral Activity Detection 406
10.6 Wideband Spectral Activity Detection with Compressive Sampling 413
10.6.1 Compressive Sampling 415
10.6.2 Compressive Sensing of Wideband Spectrum 419
10.7 Summary 421
11 Signal Classification in Wideband Cognitive Radios 429
11.1 Introduction 429
11.2 Signal Classification Problem in a Wideband Cognitive Radio 431
11.3 Feature Extraction for Signal Classification 435
11.3.1 Carrier/Center Frequency 435
11.3.2 Cyclostationary Features 436
11.3.3 Modulation Type and Order Features 441
11.4 A Signal Classification Architecture for a Wideband Cognitive Radio
445
11.5 Bayesian Nonparametric Signal Classification 447
11.6 Sequential Bayesian Nonparametric Signal Classification 462
11.7 Summary 469
12 Primary Signal Detection in DSA Cognitive Networks 472
12.1 Introduction 472
12.2 Spectrum Sensing Problem in Dynamic Spectrum Sharing CR Networks 475
12.3 Autonomous Spectrum Sensing for Dynamic Spectrum Sharing 479
12.3.1 Secondary User Sensing Observations 480
12.3.2 Channel-State (Idle/Busy) Decisions 481
12.4 Limitations of Autonomous Spectrum Sensing 489
12.5 Cooperative Spectrum Sensing for Dynamic Spectrum Sharing 492
12.6 Cooperative Channel-State Detection 495
12.6.1 Local Processing and Sensing Reports from Secondary Users 498
12.6.2 Final Channel-State Decisions at the SSDC: Decision Fusion 502
12.7 Summary 516
13 Spectrum Decision-Making in DSA Cognitive Networks 519
13.1 Introduction 519
13.2 Primary Channel Dynamic Model 520
13.3 Sensing Decisions in DSS Networks with Autonomous Cognitive Radios 522
13.3.1 Optimal Sensing Policy Determination 525
13.3.2 Optimal Myopic Sensing Policy Determination 530
13.4 Sensing Decisions in Cooperative DSS Networks 533
13.4.1 Optimal SSDC Decisions for Independent Channel Dynamics 537
13.4.2 Optimal Myopic Sensing Decisions at the SSDC with Independent
Channel Dynamics 541
13.5 Summary 550
14 Dynamic Spectrum Leasing in Cognitive Radio Networks 553
14.1 Introduction 553
14.2 DSL with Direct Rewards to Primary Users 555
14.2.1 Interference at the Primary Receiver 560
14.2.2 A Game Model for Dynamic Spectrum Leasing 565
14.2.3 Nash Equilibria in Noncooperative Games 570
14.2.4 Existence of a Nash Equilibrium in the DSL Game 573
14.3 DSL Based on Asymmetric Cooperation with Primary Users 587
14.3.1 A Primary-Secondary Coexistence Model 588
14.3.2 Asymmetric Cooperative Communications-Based DSL between Primary
Users and a Centralized Secondary Network 591
14.3.3 Asymmetric Cooperative Communications-Based DSL between Primary
Users and Autonomous Cognitive Secondary Users 604
14.4 Summary 609
15 Cooperative Cognitive Communications 613
15.1 Introduction 613
15.2 Cooperative Spectrum Sensing 619
15.3 Cooperative Spectrum Sensing and Channel-Access Decisions 621
15.4 Cooperative Communications Strategies in Cognitive Radio Networks 624
15.5 Asymmetric Cooperative Relaying in DSA Cognitive Radios 627
15.5.1 Secondary User Optimal Power Allocation for Asymmetric Cooperative
Relaying 629
15.5.2 Centralized Assignment of Cognitive Radios for Cooperation with
Primary Users: An Ideal Approach 635
15.5.3 Centralized Assignment of Cognitive Radios for Cooperation with
Primary Users: A Realistic Approach 640
15.6 Summary 644
16 Machine Learning in Cognitive Radios 647
16.1 Introduction 647
16.2 Artificial Neural Networks 650
16.2.1 Learning Algorithms for LTUs 651
16.2.2 Layered Neural Networks 655
16.2.3 Learning in Layered Feed-Forward Networks: Back-Propagation
Algorithm 656
16.2.4 Neural Networks in Cognitive Radios 662
16.3 Support Vector Machines 664
16.3.1 Statistical Learning Theory 665
16.3.2 Structural Risk Minimization with Support Vector Machines 669
16.3.3 Linear Support Vector Machines 670
16.3.4 Nonlinear Support Vector Machines 674
16.3.5 Kernel Function Implementation of Support Vector Machines 677
16.3.6 SVMs in Cognitive Radios 679
16.4 Reinforcement Learning 681
16.4.1 Temporal Difference Learning 683
16.4.2 Q-Learning in a POMDP: Replicated Q-Learning 684
16.4.3 Reinforcement Learning in Cognitive Radios 686
16.5 Multiagent Learning 688
16.5.1 Game-Theoretic Multiagent Learning 691
16.5.2 Cooperative Multiagent Learning 694
16.5.3 Multiagent Learning in Cognitive Radio Networks 696
16.6 Summary 698
Appendix A Nyquist Sampling Theorem 704
Appendix B A Collection of Useful Probability Distributions 711
B.1 Univariate Distributions 711
B.2 Multivariate Distributions 713
Appendix C Conjugate Priors 716
References 721
Index 740