In unvollständigen Märkten lassen sich Optionen mit Hilfe von Martingalmaßen bewerten. Da in einem solchen Markt aber unendlich viele dieser Maße existieren, möchten wir im vorliegenden Werk vier Martingalmaße näher betrachten. Dabei handelt es sich um das Varianz-Optimale, das Minimale, das Esscher und das Minimale Entropie Martingalmaß. Jedes einzelne dieser Martingalmaße besitzt eine andere Motivation, die es von den übrigen Maßen abgrenzt. Das Varianz-Optimale Martingalmaß wird das Maß sein, das das quadratische Risiko des Hedgefehlers minimiert, wohingegen das Minimale Martingalmaß eine Handelsstrategie liefert, die das Restrisiko minimiert. Das Esscher Martingalmaß wird unter Anwendung der Esscher Transformation hergeleitet und stellt eine einfache Möglichkeit dar, ein Martingalmaß in einem unvollständigen Markt zu finden. Das Minimale Entropie Martingalmaß wird schließlich das Maß sein, das die minimale Entropie minimiert, welche als ein Abstandsmaß zwischen zwei Wahrscheinlichkeitsmaßen dienen kann.