29,95 €
29,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
15 °P sammeln
29,95 €
29,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
15 °P sammeln
Als Download kaufen
29,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
15 °P sammeln
Jetzt verschenken
29,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
15 °P sammeln
  • Format: PDF

Originally published in 1983, the principal object of this book is to discuss in detail the structure of finite group rings over fields of characteristic, p, P-adic rings and, in some cases, just principal ideal domains, as well as modules of such group rings. The approach does not emphasize any particular point of view, but aims to present a smooth proof in each case to provide the reader with maximum insight. However, the trace map and all its properties have been used extensively. This generalizes a number of classical results at no extra cost and also has the advantage that no assumption…mehr

Produktbeschreibung
Originally published in 1983, the principal object of this book is to discuss in detail the structure of finite group rings over fields of characteristic, p, P-adic rings and, in some cases, just principal ideal domains, as well as modules of such group rings. The approach does not emphasize any particular point of view, but aims to present a smooth proof in each case to provide the reader with maximum insight. However, the trace map and all its properties have been used extensively. This generalizes a number of classical results at no extra cost and also has the advantage that no assumption on the field is required. Finally, it should be mentioned that much attention is paid to the methods of homological algebra and cohomology of groups as well as connections between characteristic 0 and characteristic p.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.